A T-Box Protein Interacting with the TCF Transcriptional Switch of Wnt Signaling in Xenopus Dorsal Axis Development By

Total Page:16

File Type:pdf, Size:1020Kb

A T-Box Protein Interacting with the TCF Transcriptional Switch of Wnt Signaling in Xenopus Dorsal Axis Development By A T-box Protein Interacting with the TCF Transcriptional Switch of Wnt Signaling in Xenopus Dorsal Axis Development by Yaxuan Yang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular, Cellular and Developmental Biology) in the University of Michigan 2014 Doctoral Committee: Professor Kenneth M. Cadigan, Chair Professor Steven E. Clark Professor Robert J. Denver Professor Diane M. Robins © Yaxuan Yang All rights reserved 2014 DEDICATION To my beloved family ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my tremendous advisor Professor Kenneth M. Cadigan. Over the past 6 years, Ken has been offering me constant guidance and help on every aspect of my scientific development, including making strategic decisions about experiments when things were not going well, teaching me how to ask the right questions and how to handle questions effectively, telling us the secret “boy and girl” theory to organize a talk, giving me advice on improving my oral presentation and writing, and sharing his own experiences during his career development. Besides being a critical, smart and diligent scientist, Ken is also very nice to students. He is always patient and supportive when I tell him my difficulties. Also, Ken’s positive attitude has deeply influenced my view about life, which I will be always grateful for. I would also like to thank my doctoral committee: Professor Steven E. Clark, Professor Robert J. Denver, and Professor Diane M. Robins for their scientific guidance on my research and also their support and advice for my career transition. I feel very lucky to have worked with all the awesome colleagues in Cadigan lab, Lisheng, Chandan, Aditi, Hilary, Chen, Pete and Nisa. They are always there to discuss papers, troubleshoot experiments, and do favors, such as changing buffers or stopping a digestion. In particular, it has been very stimulating discussing data with Chen. Hilary also gave me lots of advice inside and outside of science. She is a competent scientist as well as a great mom, offering me an amazing role model to learn from. I enjoyed very iii much sharing a bay with Pete during his gap year. He inspired me with lots of great ideas about research. I also want to say thanks to Chen, Hilary and Pete for proofreading my thesis. I also want to thank all the lab members in Denver lab and Miller lab for sharing frog facilities, fresh eggs and testis preps. Without their generous help, I would not be able to do many frog experiments. I also appreciate the help I got from the Csankovszki, Buttitta, Xu, and Li labs over the years. My friends in Ann Arbor and old friends elsewhere have been great company in sharing both happiness and sadness during my graduate school training. Specially, Dr. Yan Dong, thanks for being a great roommate and a big sister, and thanks for taking good care of me during my pregnancy. Wenjia Wang and Lu Yu, thanks for making my last year at Ann Arbor one to remember. I enjoyed cooking, chatting, karaokeing with you. I also want to say thank you to my old friends from college, Jing Zhao, Liling Wan, Wei Wang, Ziwei Liu, for being my family in the US. Most importantly, I would like to thank my family for their unconditional love, trust and support. I cannot say enough thanks to my Mom and Dad for their help with taking care of Erika. Erika, my little angel, thank you for being healthy and happy. My brother, Chaojie, thank you for taking care of Mom and Dad while I am away. Finally, I want to thank my husband, Yunfei. The 2400 miles between Santa Cruz and Ann Arbor is not easy. Thank you for making all the exhausting trips to visit me. The time with you is always the happiest. I look forward to our family reunion and our new life together! iv TABLE OF CONTENTS DEDICATION .................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF FIGURES ......................................................................................................... viii LIST OF TABLES ............................................................................................................. ix CHAPTER 1 GENERAL INTRODUCTION .................................................................... 1 1.1 Wnt/β-catenin signaling plays important roles in dorsal axis development in vertebrates ........................................................................................................................... 1 1.1.1 Overview of the Wnt signaling pathway ................................................................ 1 1.1.2 The organizer as signaling center to induce dorsal axis ......................................... 3 Historical perspective .................................................................................................. 3 Molecular nature of the Spemann Organizer ............................................................... 4 Wnt/β-catenin signaling is required for the organizer formation ................................ 5 Organizer genes activated by Wnt/β-catenin signaling ............................................... 7 1.2 TCFs are the major transcription factors of the Wnt/β-catenin pathway ...................... 8 1.2.1 Multiple functions of TCF .................................................................................... 10 DNA binding by TCF ................................................................................................ 10 TCF co-repressors...................................................................................................... 12 TCF co-activators ...................................................................................................... 13 1.2.2 Functional specialization of vertebrate TCF proteins .......................................... 15 1.2.3 TCF transcriptional switch ................................................................................... 19 TCF transcriptional switch in invertebrates............................................................... 19 TCF transcriptional switch in vertebrates .................................................................. 21 1.2.4 Target selection by TCFs ..................................................................................... 22 Insufficiency of TCF binding site .............................................................................. 22 Bipartite binding of some TCF through C-clamp and Helper site interaction .......... 23 Cooperative DNA binding with other transcription factors ...................................... 24 v Genome-wide survey and Transcription Factor collective ........................................ 26 1.3 VegT is a master regulator of mesoendoderm development in Xenopus .................... 27 1.3.1 VegT governs endoderm and mesoderm specification ........................................ 28 1.3.2 VegT is also required for the organizer formation ............................................... 29 1.3.3 T-box proteins in Xenopus ................................................................................... 30 1.3.4 Interaction between T-box proteins and Wnt signaling ....................................... 32 RATIONALE AND SPECIFIC AIMS ............................................................................. 34 CHAPTER 2 INVESTIGATING TARGET SELECTION BY NON-C-CLAMP VERTEBRATE TCFS ...................................................................................................... 45 Abstract ......................................................................................................................... 45 Introduction ................................................................................................................... 46 Results and Discussion .................................................................................................. 49 LEF1 needs a C-clamp to activate Drosophila W-CRMs in Kc cells ....................... 49 LEF1 needs a C-clamp to mediate Wg signaling in developing fly wing ................. 51 Mutagenesis screen uncovers novel cis-regulatory motifs controlling the Wnt responsiveness of the Siamois W-CRM in HEK293T cells ...................................... 53 Materials and Methods .................................................................................................. 57 Acknowledgements ....................................................................................................... 61 CHAPTER 3 VEGT PLAYS A DUAL ROLE IN THE TCF TRANSCRIPTIONAL SWITCH REGULATING SIAMOIS EXPRESSION IN XENOPUS ............................... 75 Abstract ......................................................................................................................... 75 Introduction ................................................................................................................... 76 Results ........................................................................................................................... 79 T-box and TCF sites in the Siamois W-CRM contribute to its repression in ventral blastomeres ................................................................................................................ 79 VegT regulates Siamois transcription by directly binding to the Siamois W-CRM .. 82 HIPK2 disrupts VegT binding to TCF3 .................................................................... 85 VegT also
Recommended publications
  • TBX20 Loss-Of-Function Mutation Contributes to Double Outlet Right Ventricle
    1058 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1058-1066, 2015 TBX20 loss-of-function mutation contributes to double outlet right ventricle YUN PAN1*, RUI GENG1*, NING ZHOU1, GUI-FEN ZHENG1, HONG ZHAO1, JUAN WANG2, CUI-MEI ZHAO2, XING-BIAO QIU3, YI-QING YANG3-5 and XING-YUAN LIU1 Departments of 1Pediatrics and 2Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065; 3Department of Cardiology, 4Cardiovascular Research Laboratory and 5Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China Received November 30, 2014; Accepted January 20, 2015 DOI: 10.3892/ijmm.2015.2077 Abstract. Congenital heart disease (CHD), the most prevalent nant pattern with complete penetrance. The missense mutation birth defect in humans worldwide, is still a leading non-infec- was absent in 400 control chromosomes and the altered amino tious cause of infant morbidity and mortality. Increasing acid was completely conserved evolutionarily across species. evidence demonstrates that genetic risk factors play a key role Functional analysis revealed that mutant TBX20 had a signifi- in the pathogenesis of CHD, and more than 50 genes have cantly diminished transcriptional activity compared with its been linked to various types of CHD. Nevertheless, CHD is wild-type counterpart. To the best of our knowledge, this study a heterogeneous disorder and the genetic components under- is the first to report the association of TBX20 loss-of-function pinning CHD in an overwhelming majority of cases remain mutation with increased susceptibility to DORV in humans, unknown. In the present study, the entire coding exons and which provides novel insight into the molecular mechanisms flanking introns of the TBX20 gene, which codes for a T-box responsible for CHD, suggesting potential implications for the transcription factor essential for the proper development of the antenatal prophylaxis of CHD.
    [Show full text]
  • 2007-05 TLE1 Synovial Sarcoma
    TLE1 Immunostains in the Diagnosis of Synovial Sarcoma May 2007 by Rodney T. Miller, M.D., Director of Immunohistochemistry The diagnosis of synovial sarcoma can be a chal- lenging task, particularly on small biopsy specimens, as the morphologic features of this tumor can be mimicked by a variety of other neoplasms. This month we call attention to a paper published in the February 2007 edition of the American Journal of Surgical Pathology describing the utility of immu- nostains for TLE1 in the diagnosis of this tumor. TLE immunostains are now available at ProPath. Synovial sarcoma occurs in three morphologic varie- ties: monophasic, biphasic, and poorly differentiated. It has been known for some time that synovial sar- coma is associated with a specific chromosomal H&E (left) and TLE1 immunostain (right) on a monophasic translocation, t(X;18), that results in the fusion of the synovial sarcoma. Note the numerous strongly positive nuclei SYT gene on chromosome 18 to either the SSX1 or on the TLE1 immunostain, a typical feature of this tumor. SSX2 gene on the X chromosome, resulting in the production of a SYT-SSX fusion protein. Identifica- In their study, the authors performed TLE1 immu- tion of this translocation in the appropriate setting is nostains on multiple tissue microarrays using two dif- regarded by many to be diagnostic of synovial sar- ferent antibodies (monoclonal and polyclonal), both coma. However, the methodologies used for this performing in a similar fashion. A total of 693 adult purpose (cytogenetics, fluorescent in situ hybridiza- soft tissue tumors were examined, including 94 cases tion, and reverse-transcriptase polymerase chain re- of synovial sarcoma that had documentation of the t action) are not readily available in many diagnostic (X;18) translocation.
    [Show full text]
  • Characterizing Novel Interactions of Transcriptional Repressor Proteins BCL6 & BCL6B
    Characterizing Novel Interactions of Transcriptional Repressor Proteins BCL6 & BCL6B by Geoffrey Graham Lundell-Smith A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Biochemistry University of Toronto © Copyright by Geoffrey Lundell-Smith, 2017 Characterizing Novel Interactions of Transcriptional Repression Proteins BCL6 and BCL6B Geoffrey Graham Lundell-Smith Masters of Science Department of Biochemistry University of Toronto 2016 Abstract B-cell Lymphoma 6 (BCL6) and its close homolog BCL6B encode proteins that are members of the BTB-Zinc Finger family of transcription factors. BCL6 plays an important role in regulating the differentiation and proliferation of B-cells during the adaptive immune response, and is also involved in T cell development and inflammation. BCL6 acts by repressing genes involved in DNA damage response during the affinity maturation of immunoglobulins, and the mis- expression of BCL6 can lead to diffuse large B-cell lymphoma. Although BCL6B shares high sequence similarity with BCL6, the functions of BCL6B are not well-characterized. I used BioID, an in vivo proximity-dependent labeling method, to identify novel BCL6 and BCL6B protein interactors and validated a number of these interactions with co-purification experiments. I also examined the evolutionary relationship between BCL6 and BCL6B and identified conserved residues in an important interaction interface that mediates corepressor binding and gene repression. ii Acknowledgments Thank you to my supervisor, Gil Privé for his mentorship, guidance, and advice, and for giving me the opportunity to work in his lab. Thanks to my committee members, Dr. John Rubinstein and Dr. Jeff Lee for their ideas, thoughts, and feedback during my Masters.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Myocardin Is Sufficient and Necessary for Cardiac Gene Expression in Xenopus Eric M
    Research article 987 Myocardin is sufficient and necessary for cardiac gene expression in Xenopus Eric M. Small1,*,†, Andrew S. Warkman1,*, Da-Zhi Wang2, Lillian B. Sutherland3, Eric N. Olson3 and Paul A. Krieg1,‡ 1Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, PO Box 245044, Tucson, AZ, 85724, USA 2Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-7126, USA 3Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA *These authors contributed equally to this work †Present address: Cardiovascular Research, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada ‡Author for correspondence (e-mail: [email protected]) Accepted 14 December 2004 Development 132, 987-997 Published by The Company of Biologists 2005 doi:10.1242/dev.01684 Summary Myocardin is a cardiac- and smooth muscle-specific co- expression. Inhibition of myocardin activity in Xenopus factor for the ubiquitous transcription factor serum embryos using morpholino knockdown methods results in response factor (SRF). Using gain-of-function approaches inhibition of cardiac development and the absence of in the Xenopus embryo, we show that myocardin is expression of cardiac differentiation markers and severe sufficient to activate transcription of a wide range of disruption of cardiac morphological processes. We cardiac and
    [Show full text]
  • Hes6 Inhibits Astrocyte Differentiation and Promotes Neurogenesis Through Different Mechanisms
    The Journal of Neuroscience, October 25, 2006 • 26(43):11061–11071 • 11061 Cellular/Molecular Hes6 Inhibits Astrocyte Differentiation and Promotes Neurogenesis through Different Mechanisms Sumit Jhas, Sorana Ciura,* Stephanie Belanger-Jasmin,* Zhifeng Dong, Estelle Llamosas, Francesca M. Theriault, Kerline Joachim, Yeman Tang, Lauren Liu, Jisheng Liu, and Stefano Stifani Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 The mechanisms regulating the generation of cell diversity in the mammalian cerebral cortex are beginning to be elucidated. In that regard, Hairy/Enhancer of split (Hes) 1 and 5 are basic helix-loop-helix (bHLH) factors that inhibit the differentiation of pluripotent cortical progenitors into neurons. In contrast, a related Hes family member termed Hes6 promotes neurogenesis. It is shown here that knockdown of endogenous Hes6 causes supernumerary cortical progenitors to differentiate into cells that exhibit an astrocytic morphol- ogy and express the astrocyte marker protein GFAP. Conversely, exogenous Hes6 expression in cortical progenitors inhibits astrocyte differentiation. The negative effect of Hes6 on astrocyte differentiation is independent of its ability to promote neuronal differentiation. We also show that neither its proneuronal nor its anti-gliogenic functions appear to depend on Hes6 ability to bind to DNA via the basic arm of its bHLH domain. Both of these activities require Hes6 to be localized to nuclei, but only its anti-gliogenic function depends on two short peptides, LNHLL and WRPW, that are conserved in all Hes6 proteins. These findings suggest that Hes6 is an important regulator of the neurogenic phase of cortical development by promoting the neuronal fate while suppressing astrocyte differentiation.
    [Show full text]
  • MOCHI Enables Discovery of Heterogeneous Interactome Modules in 3D Nucleome
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome Dechao Tian1,# , Ruochi Zhang1,# , Yang Zhang1, Xiaopeng Zhu1, and Jian Ma1,* 1Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA #These two authors contributed equally *Correspondence: [email protected] Contact To whom correspondence should be addressed: Jian Ma School of Computer Science Carnegie Mellon University 7705 Gates-Hillman Complex 5000 Forbes Avenue Pittsburgh, PA 15213 Phone: +1 (412) 268-2776 Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.
    [Show full text]
  • Variability in the Degree of Expression of Phosphorylated I B in Chronic
    6796 Vol. 10, 6796–6806, October 15, 2004 Clinical Cancer Research Featured Article Variability in the Degree of Expression of Phosphorylated I␬B␣ in Chronic Lymphocytic Leukemia Cases With Nodal Involvement Antonia Rodrı´guez,1 Nerea Martı´nez,1 changes in the expression profile (mRNA and protein ex- Francisca I. Camacho,1 Elena Ruı´z-Ballesteros,2 pression) and clinical outcome in a series of CLL cases with 2 1 lymph node involvement. Activation of NF-␬B, as deter- Patrocinio Algara, Juan-Fernando Garcı´a, ␬ ␣ 3 5 mined by the expression of p-I B , was associated with the Javier Mena´rguez, Toma´s Alvaro, expression of a set of genes comprising key genes involved in 6 4 Manuel F. Fresno, Fernando Solano, the control of B-cell receptor signaling, signal transduction, Manuela Mollejo,2 Carmen Martin,1 and and apoptosis, including SYK, LYN, BCL2, CCR7, BTK, Miguel A. Piris1 PIK3CD, and others. Cases with increased expression of ␬ ␣ 1Molecular Pathology Program, Centro Nacional de Investigaciones p-I B showed longer overall survival than cases with lower Oncolo´gicas, Madrid, Spain; 2Department of Genetics and Pathology, expression. A Cox regression model was derived to estimate 3 Hospital Virgen de la Salud, Toledo, Spain; Department of some parameters of prognostic interest: IgVH mutational Pathology, Hospital General Universitario Gregorio Maran˜o´n, ␬ ␣ 4 status, ZAP-70, and p-I B expression. The multivariate Madrid, Spain; Department of Hematology, Hospital Nuestra Sen˜ora analysis disclosed p-I␬B␣ and ZAP-70 expression as inde- del Prado, Talavera de la Reina, Toledo, Spain; 5Department of Pathology, Hospital Verge de la Cinta, Tortosa, Spain; pendent prognostic factors of survival.
    [Show full text]
  • RUNX3 Is Multifunctional in Carcinogenesis of Multiple Solid Tumors
    Oncogene (2010) 29, 2605–2615 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc REVIEW RUNX3 is multifunctional in carcinogenesis of multiple solid tumors LSH Chuang1 and Y Ito1,2,3 1Cancer Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Singapore; 2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore and 3Institute of Molecular and Cell Biology, Singapore The study of RUNX3 in tumor pathogenesis is a rapidly Sgpp1, Ncam1, p21WAF1) (Wotton et al., 2008), the expanding area of cancer research. Functional inactiva- RUNX proteins have been shown to perform distinct tion of RUNX3—through mutation, epigenetic silencing, functions that are dependent on tissue type (Brady and or cytoplasmic mislocalization—is frequently observed in Farrell, 2009). This review explores the dualistic solid tumors of diverse origins. This alone indicates that associations of RUNX3 with cancer with emphasis on RUNX3 inactivation is a major risk factor in tumorigen- the emerging concept of RUNX3 as a multifunctional esis and that it occurs early during progression to suppressor of solid tumors. malignancy. Conversely, RUNX3 has also been described to have an oncogenic function in a subset of tumors. Although the mechanism of how RUNX3 switches from RUNX3 inactivation is prevalent in solid tumors tumor suppressive to oncogenic activity is unclear, this is of clinical relevance with implications for cancer detection Hemizygous deletion of RUNX3 gene and prognosis. Recent developments have significantly The location of RUNX3 at chromosome 1p36, a deletion contributed to our understanding of the pleiotropic tumor hotspot in diverse cancers of epithelial, hematopoietic, suppressive properties of RUNX3 that regulate major and neural origins (Bagchi and Mills, 2008), prompts signaling pathways.
    [Show full text]
  • Discovery and Systematic Characterization of Risk Variants and Genes For
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.24.21257377; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Discovery and systematic characterization of risk variants and genes for 2 coronary artery disease in over a million participants 3 4 Krishna G Aragam1,2,3,4*, Tao Jiang5*, Anuj Goel6,7*, Stavroula Kanoni8*, Brooke N Wolford9*, 5 Elle M Weeks4, Minxian Wang3,4, George Hindy10, Wei Zhou4,11,12,9, Christopher Grace6,7, 6 Carolina Roselli3, Nicholas A Marston13, Frederick K Kamanu13, Ida Surakka14, Loreto Muñoz 7 Venegas15,16, Paul Sherliker17, Satoshi Koyama18, Kazuyoshi Ishigaki19, Bjørn O Åsvold20,21,22, 8 Michael R Brown23, Ben Brumpton20,21, Paul S de Vries23, Olga Giannakopoulou8, Panagiota 9 Giardoglou24, Daniel F Gudbjartsson25,26, Ulrich Güldener27, Syed M. Ijlal Haider15, Anna 10 Helgadottir25, Maysson Ibrahim28, Adnan Kastrati27,29, Thorsten Kessler27,29, Ling Li27, Lijiang 11 Ma30,31, Thomas Meitinger32,33,29, Sören Mucha15, Matthias Munz15, Federico Murgia28, Jonas B 12 Nielsen34,20, Markus M Nöthen35, Shichao Pang27, Tobias Reinberger15, Gudmar Thorleifsson25, 13 Moritz von Scheidt27,29, Jacob K Ulirsch4,11,36, EPIC-CVD Consortium, Biobank Japan, David O 14 Arnar25,37,38, Deepak S Atri39,3, Noël P Burtt4, Maria C Costanzo4, Jason Flannick40, Rajat M 15 Gupta39,3,4, Kaoru Ito18, Dong-Keun Jang4,
    [Show full text]
  • TLE1 Corepressor Complex Mediates a Camkinase II␦-Dependent Neurogenic Gene Activation Pathway
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 119, 815–829, December 17, 2004, Copyright ©2004 by Cell Press ActivatingthePARP-1SensorComponentoftheGroucho/ TLE1 Corepressor Complex Mediates a CaMKinase II␦-Dependent Neurogenic Gene Activation Pathway Bong-Gun Ju,1 Derek Solum,1 Eun Joo Song,4 entiate into neurons in response to both extrinsic and Kong-Joo Lee,4 David W. Rose,2 intrinsic cues (reviewed in Bally-Cuif and Hammer- Christopher K. Glass,3 and Michael G. Rosenfeld1,* schmidt [2003]). The commitment of neural stem cells 1Howard Hughes Medical Institute to the neuronal fate and their subsequent differentiation 2 Department of Medicine into neurons are controlled, in part, by mechanisms in- Division of Endocrinology volving the opposing activities of transcription factor 3 Department of Cellular and Molecular Medicine families containing the basic helix-loop-helix (bHLH) do- University of California, San Diego main, the Hairy/Enhancer of split (HES) family proteins Department and School of Medicine that negatively regulate neural differentiation, and other La Jolla, California 92093 bHLH family proteins belonging to the Neurogenin, Ash, 4 Center for Cell Signaling Research and NeuroD subgroups, collectively referred to as Division of Molecular Life Sciences and College proneural proteins (reviewed in Bertrand et al. [2002]; of Pharmacy Ross et al. [2003]). Ewha Womans University The inhibitory bHLH protein, HES1, interacts with Seoul 120-750 groucho (Gro)/transducin like enhancer of split (TLE) Korea corepressor in a manner dependent on its C-terminal WRPW motif and serves in a well-described repressor of MASH1 transcription preventing neuronal differentiation Summary (reviewed in Chen and Courey [2000]).
    [Show full text]
  • TBX20 Loss-Of-Function Mutation Responsible for Familial Tetralogy Of
    Int. J. Med. Sci. 2017, Vol. 14 323 Ivyspring International Publisher International Journal of Medical Sciences 2017; 14(4): 323-332. doi: 10.7150/ijms.17834 Research Paper TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus Ri-Tai Huang1*, Juan Wang2*, Song Xue1, Xing-Biao Qiu3, Hong-Yu Shi3, Ruo-Gu Li3, Xin-Kai Qu3, Xiao-Xiao Yang3, Hua Liu3, Ning Li3, Yan-Jie Li3, Ying-Jia Xu3, Yi-Qing Yang3,4,5 1. Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China; 2. Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China; 4. Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China; 5. Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China. * These two authors contributed equally to this work. Corresponding author: Dr. Ying-Jia Xu, Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China. E-mail: [email protected]; Prof. Yi-Qing Yang, Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China. E-mail: [email protected]. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
    [Show full text]