Endophytes of Industrial Hemp (Cannabis Sativa L.) Cultivars: Identification of Culturable Bacteria and Fungi in Leaves, Petioles and Seeds

Total Page:16

File Type:pdf, Size:1020Kb

Endophytes of Industrial Hemp (Cannabis Sativa L.) Cultivars: Identification of Culturable Bacteria and Fungi in Leaves, Petioles and Seeds Canadian Journal of Microbiology Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles and seeds Journal: Canadian Journal of Microbiology Manuscript ID cjm-2018-0108.R2 Manuscript Type: Article Date Submitted by the Author: 03-May-2018 Complete List of Authors: Scott, Maryanne; McGill University Faculty of Agriculture and Environment, Plant Science Rani, Mamta;Draft McGill University Faculty of Agriculture and Environment, Plant Science Samsatly, Jamil; McGill University Faculty of Agriculture and Environment, Plant Science Charron, Jean-Benoit; McGill University Faculty of Agriculture and Environment, Plant Science Jabaji, Suha; McGill University Faculty of Agriculture and Environment, Plant Science; Keyword: Hemp, endophytes, siderophore, Pseudomonas, molecular detection Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjm-pubs Page 1 of 49 Canadian Journal of Microbiology Scott et al. Revised- CJM-2018-0108 1 2 Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable 3 bacteria and fungi in leaves, petioles and seeds 4 5 Maryann Scott, Mamta Rani, Jamil Samsatly, Jean-Benoit Charron, Suha Jabaji* 6 Plant Science Department, MacDonald Campus of McGill University, 21,111 Lakeshore, Ste. 7 Anne-de-Bellevue, Québec, Canada, H9X3V9 8 9 10 *Corresponding Author 11 Suha Jabaji Draft 12 Phone: 514-398-7561 13 Email: [email protected] 14 15 16 17 18 19 20 1 https://mc06.manuscriptcentral.com/cjm-pubs Canadian Journal of Microbiology Page 2 of 49 Scott et al. Revised- CJM-2018-0108 21 Abstract 22 23 Plant endophytes are a group of microorganisms that reside asymptomatically within the healthy 24 living tissue. The diversity, molecular and biochemical characterization of industrial hemp- 25 associated endophytes have not been previously studied. This study explored the abundance and 26 diversity of culturable endophytes residing in petioles, leaves and seeds of three industrial hemp 27 cultivars, and examined their biochemical attributes and antifungal potential. A total of 134 28 bacterial and 53 fungal strains were isolated from cultivars Anka, CRS-1 and Yvonne. The 29 number of bacterial isolates was similarly distributed among the cultivars with the majority 30 recovered from petiole tissue. Most fungal strains originated from leaf tissue of cultivar Anka. 31 Molecular and phylogenetic analyses grouped the endophytes into 18 bacterial and 13 fungal 32 taxa, respectively. The most abundant bacterialDraft genera were Pseudomonas, Pantoea and Bacillus, 33 and the fungal genera were Aureobasidium, Alternaria and Cochliobolus. Siderophore, cellulase 34 production, and phosphorus solubilization were the main biochemical traits. In proof-of-concept 35 experiments, re-inoculation of tomato roots with some endophytes confirmed their migration to 36 aerial tissues of the plant. Taken together, this study demonstrates that industrial hemp harbours 37 a diversity of microbial endophytes some of which could be used in growth promotion and/or in 38 biological control designed experiments. 39 40 Key words: Hemp, endophytes, siderophore, Pseudomonas, molecular detection, antifungal 41 activity. 42 2 https://mc06.manuscriptcentral.com/cjm-pubs Page 3 of 49 Canadian Journal of Microbiology Scott et al. Revised- CJM-2018-0108 43 Introduction 44 Originating from the Himalayas, industrial hemp (Cannabis sativa L.) is the most ancient 45 domesticated crop. In Canada, under the Canadian Controlled Drugs and Substances Act, 46 commercial cultivation of industrial hemp as a field crop began in 1998 (Cherney and Small 47 2016). 48 Industrial hemp is a high-growing plant, typically bred for seed and fibre, and also for 49 multipurpose industrial uses such as oils and topical ointments, as well as fibre for clothing, and 50 construction material for homes and building of electric car components (Callaway and Pate 51 2009; Domke and Mude 2015; Yallew et al. 2015). Since its legalization in Canada, the total 52 land area for industrial hemp production has grown steadily, increasing from 3,200 ha to 53 approximately 44,000 ha between 2008 Draftand 2014 (Alberta Agriculture and Forestry, 2015). Both 54 hemp and marijuana varieties are members of the C. sativa species, however industrial hemp 55 cultivars have long been bred for their fibre, oil and seed aspects, and possess very low narcotic 56 value. In Canada, 45 industrial hemp cultivars are approved by Health Canada (Health Canada, 57 2016), and are mandated to have under 0.3 % of ∆-9-tetrahydrocannabinol (THC), the principal 58 intoxicant cannabinoid (van Bakel et al. 2011). These varieties are generally grain or multi-use; 59 where both the seeds and stalk find an end market (Cherney and Small 2016). 60 In Québec, farmers produced hemp on 290 hectares in 2011; a fairly small commitment in 61 comparison to the prairie provinces, which had planted 15,056 hectares in the same year 62 (Government of Alberta, 2012). This means that within the Québec market there is a great 63 potential for growth and profitability. Much of the Québec growing climate is similar to 64 Northern Ontario that has yielded an average stem yield of 6.1 tons per hectare (Ontario Ministry 65 of Agriculture and Food, 2011). Considering that demand appears to be continuing on a positive 3 https://mc06.manuscriptcentral.com/cjm-pubs Canadian Journal of Microbiology Page 4 of 49 Scott et al. Revised- CJM-2018-0108 66 trend, knowledge on selection of high-performing cultivars in terms of biomass and seed yield 67 (Aubin et al. 2016) and agronomical recommendations and guidelines (Aubin et al. 2015) has 68 been documented. 69 The phytochemical composition of industrial hemp and the marijuana varieties of 70 Cannabis does not make hemp immune to attacks by pathogens. On the contrary, Cannabis is 71 susceptible to many phytopathogens leading to a number of diseases (McPartland et al. 2000) 72 dominant at all growth stages of hemp. Several important diseases have been shown to be caused 73 by fungal pathogens including Botrytis cinerea, the causal agent of grey mold, Rhizoctonia 74 solani, the causal agent of root rot and stem canker, and Sclerotinia sclerotiorum, the causal 75 agent of hemp canker (McPartland et al. 2000). Thus, it is desirable to prevent the loss of 76 industrial hemp as well as medicinal CannabisDraft to opportunistic phytopathogens. 77 Microbial endophytes are beneficial plant-associated bacteria and fungi that are widespread 78 inhabitants inside different plant tissues and organs, without causing harm or exhibiting 79 symptomatic behaviour or visible manifestation of disease. They have been shown to assist plant 80 growth by producing plant hormones, increasing nutrient availability (Compant et al. 2010; 81 Hamilton et al. 2012; Radhakrishnan, et al. 2014; Hardoim et al. 2015; Malhadas et al. 2017), 82 and protecting plants from diseases and abiotic factors through their demonstrated capacity to 83 produce biologically active secondary metabolites (Aly et al. 2010; Kharwar et al. 2011; Gagné- 84 Bourgue et al. 2013; Brader et al. 2014), and establishing a sustainable system (Rodriguez et al. 85 2009; Santoyo et al. 2016). These attributes make microbial endophytes a target for 86 biotechnological and commercial exploitation (Staniek et al. 2008; Li et al. 2012). 87 Medicinal and wild Cannabis has been reported to harbour competent fungal and bacterial 88 endophytes that are capable of providing different forms of fitness benefits to their associated 4 https://mc06.manuscriptcentral.com/cjm-pubs Page 5 of 49 Canadian Journal of Microbiology Scott et al. Revised- CJM-2018-0108 89 host plants, and yielded insights into plant-microbe and microbe-microbe interactions (Kusari et 90 al. 2013; Gautam et al. 2013). However, no knowledge on the diversity, distribution and 91 biochemical attributes of microbial endophytes recovered from industrial hemp cultivars grown 92 in Quebec exists. 93 Our research goal was to determine the prevalence and types of endophytic bacteria and 94 fungi residing in the above-ground tissue of three industrial hemp cultivars grown under field 95 conditions, and evaluate their biochemical attributes. We then proceeded to identify 96 taxonomically the culturable bacteria and fungal endophytes by 16S rRNA and the internal 97 transcribed spacer (ITS) rDNA gene sequence analysis, respectively, and evaluated their 98 substrate utilization patterns. A few bacterial endophytes were selected to determine their 99 antimicrobial properties against economicallyDraft important fungal pathogens including those that 100 cause disease in industrial hemp and medicinal Cannabis, and we confirmed their internalization 101 and systemic spread of the endophytes in plant tissues of a horticultural plant. 102 103 Materials and methods 104 Farm site, cultivars and sample collection 105 In this study, the term hemp will be used hereafter to refer to industrial hemp. Seeds of 106 three multi-use hemp (Cannabis sativa L.) cultivars approved for production in Canada were 107 used for endophyte discovery. CRS-1 (seed use), and Anka and Yvonne (dual use; seed and 108 biomass) under the terms specified in licenses delivered to Jean-Benoit Charron by Health 109 Canada #12-C0142-R-01, 13-C0142-R-01 and 14-C0142-R-01 (Mayer et al. 2015) were grown 110 at the Emile A. Lods Agronomy Research Centre field site (N45°26´N,W73°55´), of Macdonald 111 Campus of McGill University. Detailed information on soil types and fertilization is fully 5 https://mc06.manuscriptcentral.com/cjm-pubs Canadian Journal of Microbiology Page 6 of 49 Scott et al. Revised- CJM-2018-0108 112 described in Aubin et al. (2015, 2016). Cultivars were seeded in mid-May of 2013 and grown in 113 plots 1.3 m x 5 m, containing 7 rows, spaced at 18 cm apart. No herbicide was applied, and 114 manual weeding was done on all plots throughout the growing season. Only naturally occurring 115 precipitation and light exposure were used throughout the plants’ growth (Aubin et al.
Recommended publications
  • Natural Endophytic Association Between Rhizobium Etli and Maize (Zea Mays L.)
    Journal of Biotechnology 91 (2001) 117–126 www.elsevier.com/locate/jbiotec Natural endophytic association between Rhizobium etli and maize (Zea mays L.) M.L. Gutie´rrez-Zamora, E. Martı´nez-Romero * Centro de In6estigacio´n sobre Fijacio´n de Nitro´geno, UNAM. Ap.P. 565A, 62251 Cuerna6aca, Mexico Received 19 September 2000; received in revised form 16 January 2001; accepted 2 February 2001 Abstract Maize (Zea mays) and bean (Phaseolus 6ulgaris) have been traditionally grown in association for thousands of years in Mesoamerica. From surface sterilized maize roots, we have isolated over 60 Rhizobium strains that correspond to Rhizobium etli bv. phaseoli (the main symbiont of bean) on the basis of 16S rRNA gene restriction patterns, metabolic enzyme electropherotypes, organization of nif genes, and the ability to nodulate beans. The colonization capacity of some of the isolates was tested with an unimproved maize cultivar and with 30 maize land races. Increases in plant dry weight upon R. etli inoculation were recorded with some of the land races, and these increases may be related to plant growth promotion effects. Additionally, from within maize grown in monoculture we have also recovered R. etli isolates recognizable by their 16S rRNA gene types, which lack nif genes and are incapable of nodulating bean. These strains are presumed to correspond to the earlier described non-symbiotic R. etli obtained from bean rhizosphere. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Rhizobium; Endophytes; Maize; Land races; Nitrogen fixation 1. Introduction 1998; James, 2000). In both sugar cane and rice, bacterial nitrogen fixation can contribute a sub- Cereals such as maize have high N fertilization stantial proportion of N to the plant (App et al., requirements for optimal yield.
    [Show full text]
  • Rhizobium,, Agrobacterium Agrobacterium
    Systems Microbiology Wednes Nov 1 - Brock Ch 17, 586-591 Ch 19, 656-66 Ch 31, 989-991 •• TheThe GlobalGlobal NitrogenNitrogen CycleCycle •• NN2 fixationfixation -- generalgeneral considerationsconsiderations •• PlantPlant microbialmicrobial symbiosessymbioses RhizobiumRhizobium,, AgrobacteriumAgrobacterium Table and diagram of the key processes and prokaryotes in the nitrogen cycle removed due to copyright restrictions. See Figure 19-28 in Madigan, Michael, and John Martinko. Brock Biology of Microorganisms. 11th ed. Upper Saddle River, NJ: Pearson PrenticeHall, 2006. ISBN: 0131443291. Nitrification Chemolithoautotrophs (aerobic) • Ammonia Oxidizers (Nitrosomonas, Nitrosococcus) • Nitrite Oxidizers (Nitrobacter, Nitrococcus) • Slow growing (less free energy available) • Enzyme ammonia monooxygenase - NO - NO - NH4 NO2 2 3 AO NO e- e- CO2 CH2O CO2 CH2O O2 H20 O2 H20 NH + Cation exchange capacity: 4 the ability of a soil to hold on to cations + NH + soil NH4 4 particle Microbial nitrification can effect + NH4 the retention of nitrogen in soil - NO3 - NO3 - NO3 - NO3 - NO - NO - NH4 NO2 2 3 AO NO e- e- CO2 CH2O CO2 CH2O O2 H20 O2 H20 NITROGEN CYCLING IN AQUARIA Image of fish swimming in an aquarium removed due to copyright restrictions. http://www.hubbardbrook.org/research/ gallery/powerpoint/Slide2.jpg ViewView from aboveabove Lake Lake 226 226 divider divider curtain curtain in Augustin August 1973. 1973. The bright green colour results from Cyanobacteria, which are growing on phosphorus added to the near side of the curtain. What happen’s when you dump lots of phosphate in a lake ??? Aerial view of Lake 227 in 1994. Note the bright green color caused by algae stimulated by the experimental addition of phosphorus for the 26th consecutive year.
    [Show full text]
  • Defining the Rhizobium Leguminosarum Species Complex
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2020 doi:10.20944/preprints202012.0297.v1 Article Defining the Rhizobium leguminosarum species complex J. Peter W. Young 1,*, Sara Moeskjær 2, Alexey Afonin 3, Praveen Rahi 4, Marta Maluk 5, Euan K. James 5, Maria Izabel A. Cavassim 6, M. Harun-or Rashid 7, Aregu Amsalu Aserse 8, Benjamin J. Perry 9, En Tao Wang 10, Encarna Velázquez 11, Evgeny E. Andronov 12, Anastasia Tampakaki 13, José David Flores Félix 14, Raúl Rivas González 11, Sameh H. Youseif 15, Marc Lepetit 16, Stéphane Boivin 16, Beatriz Jorrin 17, Gregory J. Kenicer 18, Álvaro Peix 19, Michael F. Hynes 20, Martha Helena Ramírez-Bahena 21, Arvind Gulati 22 and Chang-Fu Tian 23 1 Department of Biology, University of York, York YO10 5DD, UK 2 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; [email protected] 3 Laboratory for genetics of plant-microbe interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia; [email protected] 4 National Centre for Microbial Resource, National Centre for Cell Science, Pune, India; [email protected] 5 Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (E.K.J.) 6 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; [email protected] 7 Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh; [email protected] 8 Ecosystems and Environment Research programme , Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Finland; [email protected] 9 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; [email protected] 10 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Cd.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]
  • Analysis of Rhizobial Strains Nodulating Phaseolus Vulgaris From
    Systematic and Applied Microbiology 37 (2014) 149–156 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe a b,c d César-Antonio Díaz-Alcántara , Martha-Helena Ramírez-Bahena , Daniel Mulas , e b b,c e,∗ Paula García-Fraile , Alicia Gómez-Moriano , Alvaro Peix , Encarna Velázquez , d Fernando González-Andrés a Facultad de Ciencias Agronómicas y Veterinarias, Universidad Autónoma de Santo Domingo, Dominican Republic b Instituto de Recursos Naturales y Agrobiología, IRNASA (CSIC), Salamanca, Spain c Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA (CSIC), Spain d Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Spain e Departamento de Microbiología y Genética, Universidad de Salamanca, Spain a r t i c l e i n f o a b s t r a c t Article history: Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and Received 13 July 2013 played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of Received in revised form recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island 15 September 2013 showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, Accepted 18 September 2013 which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes.
    [Show full text]
  • Unesco – Eolss Sample Chapters
    BIOTECHNOLOGY – Vol VIII - Essentials of Nitrogen Fixation Biotechnology - James H. P. Kahindi, Nancy K. Karanja ESSENTIALS OF NITROGEN FIXATION BIOTECHNOLOGY James H. P. Kahindi United States International University, Nairobi, KENYA Nancy K. Karanja Nairobi Microbiological Resources Centre, University of Nairobi, KENYA Keywords: Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium, Legumes, Nitrogen Fixation Contents 1. Introduction 2. Crop Requirements for Nitrogen 3. Potential for Biological Nitrogen Fixation [BNF] Systems 4. Diversity of Rhizobia 4.l. Factors Influencing Biological Nitrogen Fixation [BNF] 5. The Biochemistry of Biological Nitrogen Fixation: The Nitrogenase System 5.1. The Molybdenum Nitrogenase System 5.1.1. The Iron Protein (Fe protein) 5.1.2. The MoFe Protein 5.2. The Vanadium Nitrogenase 5.3. Nitrogenase-3 6. The Genetics of Nitrogen Fixation 6.1. The Mo-nitrogenase Structural Genes (nif H,D,K) 6.2. Genes for nitrogenase-2 (vnf H,D,G,K,vnfA,vnfE,N,X) 6.3. Regulation of Nif Gene Expression 7. The Potential for Biological Nitrogen Fixation with Non-legumes 7.1. Frankia 7.2. Associative Nitrogen Fixation 8. Application of Biological Nitrogen Fixation Technology 8.1. Experiences of the Biological Nitrogen Fixation -MIRCENs 8.2 Priorities for Action Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Nitrogen constitutes 78% of the Earth’s atmosphere, yet it is frequently the limiting nutrient to agricultural productivity. This necessitates the addition of nitrogen to the soil either through industrial nitrogen fertilizers, which is accomplished at a substantial energy cost, or by transformation of atmospheric nitrogen into forms which plants can take up for protein synthesis. This latter form is known as biological nitrogen fixation and is accomplished by free-living and symbiotic microorganisms endowed with the enzyme nitrogenase.
    [Show full text]
  • Transfer of the Symbiotic Plasmid of Rhizobium Etli CFN42 to Endophytic Bacteria Inside Nodules
    fmicb-11-01752 July 27, 2020 Time: 18:28 # 1 ORIGINAL RESEARCH published: 29 July 2020 doi: 10.3389/fmicb.2020.01752 Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42 to Endophytic Bacteria Inside Nodules Luis Alfredo Bañuelos-Vazquez1, Daniel Cazares1, Susana Rodríguez2, Laura Cervantes-De la Luz1, Rosana Sánchez-López3, Lucas G. Castellani4, Gonzalo Torres Tejerizo4 and Susana Brom1* 1 Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 2 Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 3 Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 4 Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM) – CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina Conjugative transfer is one of the mechanisms allowing diversification and evolution of bacteria. Rhizobium etli CFN42 is a bacterial strain whose habitat is the rhizosphere and Edited by: is able to form nodules as a result of the nitrogen-fixing symbiotic relationship it may Clay Fuqua, Indiana University Bloomington, establish with the roots of Phaseolus vulgaris. R. etli CFN42 contains one chromosome United States and six large plasmids (pRet42a – pRet42f). Most of the genetic information involved Reviewed by: in the establishment of the symbiosis is localized on plasmid pRet42d, named as Joel S. Griffitts, the symbiotic plasmid (pSym). This plasmid is able to perform conjugation, using Brigham Young University, United States pSym encoded transfer genes controlled by the RctA/RctB system.
    [Show full text]
  • Post-Transcriptional Control in the Regulation of Polyhydroxy- Alkanoates Synthesis
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2021 Review Post-transcriptional control in the regulation of polyhydroxy- alkanoates synthesis Alexandra Peregrina1*, João Martins-Lourenço1, Filomena Freitas 2,3, Maria A. M. Reis 2,3 and Cecília M. Arraiano1* 1 Control of Gene Expression Lab., Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] (J.M-L.) 2 Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Ca- parica, Portugal; [email protected] (F.F.); [email protected] (M.A.M.R.) 3 UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal * Correspondence: [email protected] (A.P.); [email protected] (C.M.A.) Abstract: The large production of non-degradable petrol-based plastics has become a major global issue due to its environ- mental pollution. Biopolymers produced by microorganisms such as polyhydroxyalkanoates (PHAs) are gaining potential as a sustainable alternative, but the high cost associated to their industrial production has been a limiting factor. Post-transcriptional regulation is a key step to control gene expression in changing environments and has been reported to play a major role in numerous cellular processes. However, limited reports are available con- cerning the regulation of PHA accumulation in bacteria, and many essential regulatory factors still need to be identified. Here, we review studies where the synthesis of PHA has been reported to be regulated at the post-transcriptional level, and we analyze the RNA-mediated networks involved.
    [Show full text]
  • Rhizobium Gallicum As an Efficient Symbiont for Bean
    Rhizobium gallicum as an efficient symbiont for bean cultivation Bacem Mnasri, Fatma Tajini, Mustapha Trabelsi, Mohamed Elarbi Aouani, Ridha Mhamdi To cite this version: Bacem Mnasri, Fatma Tajini, Mustapha Trabelsi, Mohamed Elarbi Aouani, Ridha Mhamdi. Rhizo- bium gallicum as an efficient symbiont for bean cultivation. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2007, 27 (4), pp.331-336. hal-00886377 HAL Id: hal-00886377 https://hal.archives-ouvertes.fr/hal-00886377 Submitted on 1 Jan 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. 27 (2007) 331–336 Available online at: c INRA, EDP Sciences, 2007 www.agronomy-journal.org DOI: 10.1051/agro:2007024 Original article Rhizobium gallicum as an efficient symbiont for bean cultivation Bacem Mnasria,FatmaTajinib, Mustapha Trabelsib, Mohamed Elarbi Aouania, Ridha Mhamdia* a Laboratoire Intéractions Légumineuses-Microorganismes, Centre de Biotechnologie de Borj-Cédria, BP 901, Hammam-Lif 2050, Tunisia b École Supérieure d’Agriculture de Mateur, Bizerte, Tunisia (Accepted 27 April 2007) Abstract – Rhizobia are soil bacteria that fix atmospheric nitrogen in symbiosis with legumes in specialized organs called nodules. The legumes thus acquire the autonomy to grow in nitrogen-deficient soils.
    [Show full text]
  • Diversity of Rhizobium-Phaseolus Vulgaris Symbiosis: Overview and Perspectives
    Plant and Soil 252: 11–23, 2003. © 2003 FAO. Published by Kluwer Academic Publishers. Printed in the Netherlands. 11 Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives Esperanza Mart´ınez-Romero∗ Centro de Investigaci´on sobre Fijaci´on de Nitr´ogeno. UNAM. Ap. Postal 565-A. Cuernavaca, Morelos, M´exico Received 11 October 2001. Accepted in revised form 28 March 2002 Key words: biodiversity, nitrogen fixation, nodulation, Phaseolus vulgaris, Rhizobium, symbiosis Abstract Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops.
    [Show full text]
  • Rhizobium Tumorigenes Sp. Nov., a Novel Plant Tumorigenic Bacterium
    www.nature.com/scientificreports OPEN Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on Received: 24 October 2017 Accepted: 4 June 2018 thornless blackberry Published: xx xx xxxx Nemanja Kuzmanović 1, Kornelia Smalla1, Sabine Gronow2 & Joanna Puławska 3 Four plant tumorigenic strains 932, 1019, 1078T and 1081 isolated from cane gall tumors on thornless blackberry (Rubus sp.) were characterized. They shared low sequence identity with related Rhizobium spp. based on comparisons of 16S rRNA gene (≤98%) and housekeeping genes atpD, recA and rpoB (<90%). Phylogenetic analysis indicated that the strains studied represent a novel species within the genus Rhizobium, with Rhizobium tubonense CCBAU 85046T as their closest relative. Furthermore, obtained average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) values calculated for whole- genome sequences of strain 1078T and related Rhizobium spp. confrmed the authenticity of the novel species. The ANI-Blast (ANIb), ANI-MUMmer (ANIm) and in silico DDH values between strain 1078T and most closely related R. tubonense CCBAU 85046T were 76.17%, 84.11% and 21.3%, respectively. The novel species can be distinguished from R. tubonense based on phenotypic and chemotaxonomic properties. Here, we demonstrated that four strains studied represent a novel species of the genus Rhizobium, for which the name Rhizobium tumorigenes sp. nov. is proposed (type strain 1078T = DSM 104880T = CFBP 8567T). R. tumorigenes is a new plant tumorigenic species carrying the tumor-inducing (Ti) plasmid. Plant tumorigenic bacteria belonging to the family Rhizobiaceae are associated with crown gall and cane gall diseases that can afect various plants1–3.
    [Show full text]
  • Methods in Legume-Rhizobium Technology
    METHODS IN LEGUME-RHIZOBIUM TECHNOLOGY by P. Somasegaran and H. J. Hoben University of Hawaii NifTAL* Project and MIRCEN* Department of Agronomy and Soil Science Hawaii Institute of Tropical Agriculture and Hunan Resources College of Tropical Agriculture and Human. Resources May, 1985 This document was prepared under United States Agency for International Development (USAID) contract No. DAN-0613-C-00-2064-00 * NifTAL and MIRCEN are acronyms for Nitrogen fixation in Tropical Agricultural Legumes and Microbiological Resources Center, respectively FOREWORD There is no doubt that in the near future the emerging biotechnology based on genetic engineering and somatic cell fusion will contribute significantly to solving agricultural problems. Presently, however, so much of the available technology, i.e., inoculum technology, is not being fully enough utilized in agriculture. It would be prudent to devote major efforts to their adoption. Serious obstacles to adoption of modern technologies, especially in developing countries, is the shortage of trained personnel. It is, therefore, essential for all development support projects to include a training component. This book is the culmination of several years of experience in training of scientists and technicians from developing countries. The six-week Training Course, for which this book is intended, was developed at NifTAL and, in the early years, taught there. Subsequently, the course was taken to the field and offered at host institutions in Africa, Asia and Latin America. Somasegaran and Hoben have done a commendable job of drawing from their experience with these courses. They have compiled an “All You Ever Wanted To Know About …” style book that is not only valuable to developing country scientists, but also useful for technicians and graduate students starting work with the legume/Rhizobium symbiosis.
    [Show full text]