The Logicians of Kant's School
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pluralisms About Truth and Logic Nathan Kellen University of Connecticut - Storrs, [email protected]
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Pluralisms about Truth and Logic Nathan Kellen University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Kellen, Nathan, "Pluralisms about Truth and Logic" (2019). Doctoral Dissertations. 2263. https://opencommons.uconn.edu/dissertations/2263 Pluralisms about Truth and Logic Nathan Kellen, PhD University of Connecticut, 2019 Abstract: In this dissertation I analyze two theories, truth pluralism and logical pluralism, as well as the theoretical connections between them, including whether they can be combined into a single, coherent framework. I begin by arguing that truth pluralism is a combination of realist and anti-realist intuitions, and that we should recognize these motivations when categorizing and formulating truth pluralist views. I then introduce logical functionalism, which analyzes logical consequence as a functional concept. I show how one can both build theories from the ground up and analyze existing views within the functionalist framework. One upshot of logical functionalism is a unified account of logical monism, pluralism and nihilism. I conclude with two negative arguments. First, I argue that the most prominent form of logical pluralism faces a serious dilemma: it either must give up on one of the core principles of logical consequence, and thus fail to be a theory of logic at all, or it must give up on pluralism itself. I call this \The Normative Problem for Logical Pluralism", and argue that it is unsolvable for the most prominent form of logical pluralism. Second, I examine an argument given by multiple truth pluralists that purports to show that truth pluralists must also be logical pluralists. -
Misconceived Relationships Between Logical Positivism and Quantitative Research: an Analysis in the Framework of Ian Hacking
DOCUMENT RESUME ED 452 266 TM 032 553 AUTHOR Yu, Chong Ho TITLE Misconceived Relationships between Logical Positivism and Quantitative Research: An Analysis in the Framework of Ian Hacking. PUB DATE 2001-04-07 NOTE 26p. PUB TYPE Opinion Papers (120) ED 2S PRICE MF01/PCO2 Plus Postage. 'DESCRIPTORS *Educational Research; *Research Methodology IDENTIFIERS *Logical Positivism ABSTRACT Although quantitative research methodology is widely applied by psychological researchers, there is a common misconception that quantitative research is based on logical positivism. This paper examines the relationship between quantitative research and eight major notions of logical positivism:(1) verification;(2) pro-observation;(3) anti-cause; (4) downplaying explanation;(5) anti-theoretical entities;(6) anti-metaphysics; (7) logical analysis; and (8) frequentist probability. It is argued that the underlying philosophy of modern quantitative research in psychology is in sharp contrast to logical positivism. Putting the labor of an out-dated philosophy into quantitative research may discourage psychological researchers from applying this research approach and may also lead to misguided dispute between quantitative and qualitative researchers. What is needed is to encourage researchers and students to keep an open mind to different methodologies and apply skepticism to examine the philosophical assumptions instead of accepting them unquestioningly. (Contains 1 figure and 75 references.)(Author/SLD) Reproductions supplied by EDRS are the best that can be made from the original document. Misconceived relationships between logical positivism and quantitative research: An analysis in the framework of Ian Hacking Chong Ho Yu, Ph.D. Arizona State University April 7, 2001 N N In 4-1 PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIALHAS BEEN GRANTED BY Correspondence: TO THE EDUCATIONAL RESOURCES Chong Ho Yu, Ph.D. -
John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”. -
The Etienne Gilson Series 21
The Etienne Gilson Series 21 Remapping Scholasticism by MARCIA L. COLISH 3 March 2000 Pontifical Institute of Mediaeval Studies This lecture and its publication was made possible through the generous bequest of the late Charles J. Sullivan (1914-1999) Note: the author may be contacted at: Department of History Oberlin College Oberlin OH USA 44074 ISSN 0-708-319X ISBN 0-88844-721-3 © 2000 by Pontifical Institute of Mediaeval Studies 59 Queen’s Park Crescent East Toronto, Ontario, Canada M5S 2C4 Printed in Canada nce upon a time there were two competing story-lines for medieval intellectual history, each writing a major role for scholasticism into its script. Although these story-lines were O created independently and reflected different concerns, they sometimes overlapped and gave each other aid and comfort. Both exerted considerable influence on the way historians of medieval speculative thought conceptualized their subject in the first half of the twentieth cen- tury. Both versions of the map drawn by these two sets of cartographers illustrated what Wallace K. Ferguson later described as “the revolt of the medievalists.”1 One was confined largely to the academy and appealed to a wide variety of medievalists, while the other had a somewhat narrower draw and reflected political and confessional, as well as academic, concerns. The first was the anti-Burckhardtian effort to push Renaissance humanism, understood as combining a knowledge and love of the classics with “the discovery of the world and of man,” back into the Middle Ages. The second was inspired by the neo-Thomist revival launched by Pope Leo XIII, and was inhabited almost exclusively by Roman Catholic scholars. -
Laws of Thought and Laws of Logic After Kant”1
“Laws of Thought and Laws of Logic after Kant”1 Published in Logic from Kant to Russell, ed. S. Lapointe (Routledge) This is the author’s version. Published version: https://www.routledge.com/Logic-from-Kant-to- Russell-Laying-the-Foundations-for-Analytic-Philosophy/Lapointe/p/book/9781351182249 Lydia Patton Virginia Tech [email protected] Abstract George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of thought acquire normative force when constrained to mathematical reasoning. Boole’s motivation is, first, to address issues in the foundations of mathematics, including the relationship between arithmetic and algebra, and the study and application of differential equations (Durand-Richard, van Evra, Panteki). Second, Boole intended to derive the laws of logic from the laws of the operation of the human mind, and to show that these laws were valid of algebra and of logic both, when applied to a restricted domain. Boole’s thorough and flexible work in these areas influenced the development of model theory (see Hodges, forthcoming), and has much in common with contemporary inferentialist approaches to logic (found in, e.g., Peregrin and Resnik). 1 I would like to thank Sandra Lapointe for providing the intellectual framework and leadership for this project, for organizing excellent workshops that were the site for substantive collaboration with others working on this project, and for comments on a draft. -
Reviving Material Theories of Induction John P. Mccaskey 1
Reviving Material Theories of Induction John P. McCaskey 1. Reviving material theories of induction John D. Norton says that philosophers have been led astray for thousands of years by their attempt to treat induction formally (Norton, 2003, 2005, 2010, 2014, 2019). He is correct that such an attempt has caused no end of trouble, but he is wrong about the history. There is a rich tradition of non-formal induction in the writings of, among others, Aristotle, Cicero, John Buridan, Lorenzo Valla, Rudolph Agricola, Peter Ramus, Francis Bacon, and William Whewell. In fact, material theories of induction prevailed all through antiquity and from the Renaissance to the mid-1800s. Recovering these past systems would not only fill lacunae in Norton’s own theory but would highlight areas where Norton has not freed himself from the straightjacket of formal induction as much as he might think. The effort might also help us build a new theory of induction on the ground Norton has cleared for us. This essay begins that recovery and invites that rebuilding.1 2. Formal vs. Material theories of induction The distinction between formal and material theories of induction was first drawn, at least under those names, in the 1840s. The inductive system of Francis Bacon had prevailed for two hundred years, and some philosophers were starting to complain about that, most influentially a professor at Oxford University named Richard Whately.2 Bacon’s induction was an extension of Renaissance classification logic (“topics-logic”). It was orderly and methodical, but it was not 1 The essay will not defend particular formal systems against Norton’s attacks. -
Philosophy of Logic (Routledge Revivals)
Routledge Revivals Philosophy of Logic First published in 1971, Professor Putnam's essay concerns itself with the ontological problem in the philosophy of logic and mathematics - that is, the issue of whether the abstract entities spoken of in logic and mathematics really exist. He also deals with the question of whether or not reference to these abstract entities is really indispensible in logic and whether it is necessary in physical science in general. This page intentionally left blank Philosophy of Logic Hilary Putnam First published in the UK in 1972 by George Allen & Unwin Ltd This edition first published in 2010 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN Simultaneously published in the USA and Canada by Routledge 270 Madison Avenue, New York, NY 10016 Routledge is an imprint of the Taylor & Francis Group, an informa business © 1971 Hilary Putnam All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Publisher’s Note The publisher has gone to great lengths to ensure the quality of this reprint but points out that some imperfections in the original copies may be apparent. Disclaimer The publisher has made every effort to trace copyright holders and welcomes correspondence from those they have been unable to contact. A Library of Congress record exists under ISBN: 0041600096 ISBN 13: 978-0-415-58092-2 (hbk) ISBN 10: 0-415-58092-7 (hbk) Philosophy of Logic This page intentionally left blank This page intentionally left blank This page intentionally left blank Philosophy of Logic ••••• Hilary Putnam PHILOSOPHY OF LOGIC. -
Leibniz on Logic, Language and Signs: a Bibliography (L- Z)
Leibniz on Logic, Language and Signs: a Bibliography (L- Z) https://www.historyoflogic.com/biblio/leibniz-logic-biblio-two.htm History of Logic from Aristotle to Gödel by Raul Corazzon | e-mail: [email protected] Leibniz on Logic, Language and Semiotics. Annotated bibliography (Second Part: L - Z) BIBLIOGRAPHY 1. Lenders, Winfried. 1971. Die Analytische Begriffs- Und Urteilstheorie Von G.W. Leibniz Und Chr. Wolff. Hildesheim: Georg Olms. 2. Lenzen, Wolfgang. 1983. "Leibniz Und Die Entwicklung Der Modernen Logik." In Leibniz, Werk Und Wirkung. Iv. Internationaler Leibniz-Kongress (Hannover, 14 - 19 November 1983), 418-425. Hannover: Gottfried Wilhelm Leibniz Gesellschaft. Reprinted in revised form in: W. Lenzen - Calculus Universalis (2004) pp. 15-22 3. ———. 1983. "Zur 'Extensionalen' Und 'Intensionalen' Interpretation Der Leibnizschen Logik." Studia Leibnitiana no. 15:129-148. Reprinted in revised form in: W. Lenzen - Calculus Universalis (2004) pp. 23-46. "Against the prevailing opinion expressed, e.g., by L. Couturat it is argued that the so-called "intensional" point of view which Leibniz mostly preferred to the nowadays usual extensional interpretation is neither "confuse et vague" nor may it be made responsible for the alleged "échec final de son système" (Couturat, La logique de Leibniz, 387). We present a precise definition of an "intensional" semantics which reflects the Leibnizian ideas and which may be proven to be equivalent to standard extensional semantics." 4. ———. 1984. "'Unbestimmte Begriffe' Bei Leibniz." Studia Leibnitiana -
Redalyc.Logical Consequence for Nominalists
THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia ISSN: 0495-4548 [email protected] Universidad del País Vasco/Euskal Herriko Unibertsitatea España ROSSBERG, Marcus; COHNITZ, Daniel Logical Consequence for Nominalists THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia, vol. 24, núm. 2, 2009, pp. 147- 168 Universidad del País Vasco/Euskal Herriko Unibertsitatea Donostia-San Sebastián, España Available in: http://www.redalyc.org/articulo.oa?id=339730809003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Logical Consequence for Nominalists Marcus ROSSBERG and Daniel COHNITZ BIBLID [0495-4548 (2009) 24: 65; pp. 147-168] ABSTRACT: It has repeatedly been argued that nominalistic programmes in the philosophy of mathematics fail, since they will at some point or other involve the notion of logical consequence which is unavailable to the nominalist. In this paper we will argue that this is not the case. Using an idea of Nelson Goodman and W.V.Quine's which they developed in Goodman and Quine (1947) and supplementing it with means that should be nominalistically acceptable, we present a way to explicate logical consequence in a nominalistically acceptable way. Keywords: Philosophy of mathematics, nominalism, logical consequence, inferentialism, Nelson Goodman, W.V. Quine. 1. The Argument from Logical Consequence We do not have any strong convictions concerning the question of the existence or non- existence of abstract objects. We do, however, believe that ontological fastidiousness is prima facie a good attitude to adopt. -
The History of Logic
c Peter King & Stewart Shapiro, The Oxford Companion to Philosophy (OUP 1995), 496–500. THE HISTORY OF LOGIC Aristotle was the first thinker to devise a logical system. He drew upon the emphasis on universal definition found in Socrates, the use of reductio ad absurdum in Zeno of Elea, claims about propositional structure and nega- tion in Parmenides and Plato, and the body of argumentative techniques found in legal reasoning and geometrical proof. Yet the theory presented in Aristotle’s five treatises known as the Organon—the Categories, the De interpretatione, the Prior Analytics, the Posterior Analytics, and the Sophistical Refutations—goes far beyond any of these. Aristotle holds that a proposition is a complex involving two terms, a subject and a predicate, each of which is represented grammatically with a noun. The logical form of a proposition is determined by its quantity (uni- versal or particular) and by its quality (affirmative or negative). Aristotle investigates the relation between two propositions containing the same terms in his theories of opposition and conversion. The former describes relations of contradictoriness and contrariety, the latter equipollences and entailments. The analysis of logical form, opposition, and conversion are combined in syllogistic, Aristotle’s greatest invention in logic. A syllogism consists of three propositions. The first two, the premisses, share exactly one term, and they logically entail the third proposition, the conclusion, which contains the two non-shared terms of the premisses. The term common to the two premisses may occur as subject in one and predicate in the other (called the ‘first figure’), predicate in both (‘second figure’), or subject in both (‘third figure’). -
Philosophy of Logic
Philosophy of Logic Fall 2005 - Winter 2006 Our goal over these two quarters is to think through a series of positions on the nature of logical truth. We’ll focus on the most fundamental questions: what is the ground of logical truth? (what makes logical truths true?), and how do we come to know these truths? I have in mind here the simplest of logical truths -- if it’s either red or green and it’s not red, then it must be green -- or the simplest of logical validities -- any situation in which all men are mortal and Socrates is a man is a situation in which Socrates is mortal. The default requirement for those taking the course for a grade (other than S/U) is three short papers (750-1250 words) due at the beginning of class in the 4th week, 7th week, and 10th week. Each paper should isolate one localized point in the readings and offer some analysis and/or critique. Other options are open to negotiation. I assume everyone has access to copies of: Carnap, Logical Syntax of Language. Frege, A Frege Reader (edited by Beany). Wittgenstein, Tractatus Logico-Philosophicus (preferably the Ogden translation). Philosophical Investigations. Course copies of Anscombe, Black, Fogelin, Hacker, Kenny, Kripke, McGinn, Mounce, Ostrow, Pears, Stenius, Stern (both books), and Wittgenstein’s Remarks on the Foundations of Mathematics will be kept in Brian Rogers’ office for borrowing. All other assigned reading (plus some extra material for the curious) will be available outside my office for photocopying. Please come to the first meeting prepared to discuss the Kant reading. -
ARISTOTLE's THEORY of the ASSERTORIC SYLLOGISM Keywords
ARISTOTLE’S THEORY OF THE ASSERTORIC SYLLOGISM STEPHEN READ Abstract. Although the theory of the assertoric syllogism was Aristotle’s great invention, one which dominated logical theory for the succeeding two millennia, accounts of the syllogism evolved and changed over that time. In- deed, in the twentieth century, doctrines were attributed to Aristotle which lost sight of what Aristotle intended. One of these mistaken doctrines was the very form of the syllogism: that a syllogism consists of three propositions containing three terms arranged in four figures. Yet another was that a syllo- gism is a conditional proposition deduced from a set of axioms. There is even unclarity about what the basis of syllogistic validity consists in. Returning to Aristotle’s text, and reading it in the light of commentary from late antiquity and the middle ages, we find a coherent and precise theory which shows all these claims to be based on a misunderstanding and misreading. Keywords: syllogism, reduction, invalidity, natural deduction, ecthesis, Aristotle. 2010 Mathematics Subject Classification: 01A20, 03A05 1. What is a Syllogism? Aristotle’s theory of the assertoric, or categorical, syllogism dominated much of logical theory for the succeeding two millennia. But as logical theory developed, its connection with Aristotle because more tenuous, and doctrines and intentions were attributed to him which are not true to what he actually wrote. Looking at the text of the Analytics, we find a much more coherent theory than some more recent accounts would suggest.1 Robin Smith (2017, §3.2) rightly observes that the prevailing view of the syl- logism in modern logic is of three subject-predicate propositions, namely, two premises and a conclusion, whether or not the conclusion follows from the premises.