History and Philosophy of Logic

Total Page:16

File Type:pdf, Size:1020Kb

History and Philosophy of Logic C. I. Lewis (I883-I964) was the first major figure in history and philosophy of logic—a field that has come to be recognized as a sepa- rate specialty after years of work by Ivor Grat- tan-Guinness and others (Dawson 2003, 257). Lewis was among the earliest to accept the challenges offered by this field; he was the first /^^ T who had the philosophical and mathematical talent, the philosophical, logical, and historical History and Philosophy background, and the patience and dedication to objectivity needed to excel. He was blessed of Logic with many fortunate circumstances, not least JOHN CORCORAN of which was entering the field when mathe- matical logic, after only six decades of toil, had just reaped one of its most important harvests with publication of the monumental Principia Mathematica. It was a time of joyful optimism which demanded an historical account and a sober philosophical critique. Lewis was one of the first to apply to math- ematical logic the Aristotelian dictum that we do not understand a living institution until we see it growing from its birth. He wiU always be regarded as a unique authority on the founding of mathematical logic because he began his meticulous and broadly informed study of its history when it had reached a certain maturity as a field, but before its later explosive develop- ment had a chance to cloud our understanding of its founding and formative years. Lewis's judgment that Boole was the founder of mathe- matical logic, the person whose work began the continuous development of the subject, stands as a massive obstacle to revisionists whose philo- sophical or nationalistic commitments render this fact inconvenient. Lewis's articles and books form an essential part not only of history and philosophy of logic, but of logic itself. His criticism of lapses in rigor in Principia Mathematica served to notify generations of logicians that proof was not to be identified with formalistic manipulation of esoteric formulas. TRANSACTIONS OF THE CHARLES S. PEIRCE SOCIETY Vol. 42, No. 1 ©2006 <-0 The welcome and long-awaited publication of Murray Murphey's mas- Z terful intellectual biography C I. Lewis: The Last Great Pragmatist (Albany: O SUNY Press, 2005) is occasion to reexamine Lewis's contribution to this ^ field. Thankfully, Murphey saw fit to include ample discussion of the logi- ^ cal aspect of Lewis's wide-ranging thought—which in its full scope goes far . beyond history and philosophy of logic. As Murphey indicates, logic was a ^ small part of the Lewis legacy. He is regarded as a towering figure by many 2 who have little or no appreciation of his great achievements in history and ^ philosophy of logic. I cannot speculate on whether future philosophers will p/ continue to give high marks to Lewis as an epistemologist, a metaphysician, [_i or a value theorist, but I am confident that no historian of logic will be able to ignore his work as a historian of logic, and I strongly suspect and hope that his stature as a philosopher of logic will only increase. Of course, even had he never written a word of history of logic or of philosophy of logic, as the founder of modern modal logic his status as a logician would have been secure. He has a permanent place in history of logic. This commentary does not begin to do justice to Murphey's excellent treatment of Lewis's logic and contribution to history and philosophy of logic. Rather it aims to complement Murphey's book with comments inter- relating Lewis's ideas and connecting them with those of others. It is a pleasure to write this commentary, not only as a tribute to Lewis's contribu- tion to the field but also because I feel a deep affinity with him as a philoso- pher of logic. I think that Lewis had excellent logical instincts and that he was basically right on important and controversial issues that other "more sophisticated" philosophers of logic were impatient with. Other great philosophers of logic were sometimes dogmatic, cavalier, elitist, arrogant, scientistic, evasive, arbitrary, self-righteous, or dismissive of legitimate criti- cism; Lewis was humanistic, serious, patient, responsible, sensitive and open-minded. He always gives the impression that he would listen to any informed objection. Many of my views are developments, refinements, or variants of views Lewis held or would have held. I should say at the outset, however, that— contrary to Lewis—I was never attracted to the Frege-Russell logicism that held that all of mathematics is tautological. I could not accept the first step —the idea that number theory is composed exclusively of laws of logic. I could see that ambiguities would make it possible for an intelligent person to construe the equation "5 + 7 = 12" as tautological; but I could not see how such a thing could be said for an inequation such as "5 + 7 7^ 13". The view that inequations are tautological is one even Russell himself came to retract, but which Lewis never doubted (Lewis-Lan^ord 1932, 21 If Murphey, 82). Logic Lncludes Formal Epistemology Before Boole, logic was focused on two central problems of logic as formal epistemology: how to show that a given conclusion follows from given prem- ises that formally imply it, and how to show that a given conclusion does not foUow from given premises that do not formally imply it. Aristotle wanted a p decisive test or criterion for determining if the conclusion follows, and a deci- •*"' sive test or criterion for determining if the conclusion does not follow. Using n other equally traditional terminology, the two central problems were how to Z' establish validity and how to establish invalidity of an arbitrary argument, no 'X matter how many premises or how complicated its propositions. !^ Aristotle did not solve the problem of formal epistemology in its full ^ generality, nor did he claim to—contrary to what a few later authors seemed 3 to have thought (^Cohen-Nagel 1934, 110). Although he believed or even knew that he had completed "the logic of categorical propositions", he ?! never thought that he had completed logic. In the opinion of many logicians S today, perhaps not a majority, the full problem has still not been solved "3^ (despite occasional enthusiastic statements that it has). Aristotle would ^ never have written what Lewis wrote (Z 932, 72): "Given premises and con- '^ elusion, logic can determine whether this conclusion follows". ^ This is one of many places where Lewis implicitly aligns himself with '^ Aristotle and Boole by endorsing the traditional view that logic includes for- ° mal epistemology, even though at the same time he over-estimates modern ^ achievements. Elsewhere Lewis says that logic can be thought of as an z "organon" of demonstrative knowledge or as a "canon of deductive infer- O ence" (J.932, 235 and Mur-phey, Ch. 3). As we will see, Lewis does not limit logic to formal epistemology, to the concern with determining validity or invalidity of premise-conclusion arguments. In this regard he agrees with Boole and disagrees with Aristotle. Nevertheless, he never wavers in his con- viction that logic includes formal epistemology at least as a part. In 1957, near the end of his career, he seems to revisit his view of logic as including formal epistemology when he writes: "Logic is concerned only with what is deducible from what. ." (Murphey, 319). Boole's Thesis: Logic is Mathematical Perhaps the first Boolean Revolution was announced in his 1847 book The Mathematical Analysis of Logic (Cambridge: Macmillan). It was more boldly reit- erated on the last page of his 1848 article "The Calculus of Logic" (^Cam- bridge and Dublin Mathematical Journal 3:183—198): The view which these enquiries present of the nature of language . exhibit it not as a mere collection of signs, but as a system of expression, the elements of which are subject to the laws of the thought which they represent. That those laws are as rigorously mathematical as are the laws which govern the purely quantitative conceptions of space and time, of number and magnitude, is a conclusion which I do not hesitate to submit to the exactest scrutiny. With even more confidence he returned to this theme on page 12 of his 1854 masterpiece Laws of Thought, "it is certain that [logics] ultimate forms and processes are mathematical". He again emphasizes his thesis in the last 1-0 paragraph of the book. Perhaps Boole's most revolutionary achievement was Z to persuade the world's logicians that logical reality is mathematical, or at O least that logic should be pursued mathematically. 1^ Lewis was one of the first philosophically trained logicians to be fully |~^ persuaded of what may be called in retrospect "Boole's Thesis": logic is _. mathematical. This view is a kind of converse of the equally revolutionary jy^ "Logistic Thesis" in the form "mathematics is logical", also accepted by •7 Lewis {Murphey, Ch. I). Despite the fact that both theses tended to attract ^ superficial or scientistic thinkers who, for example, denigrated the more ^ humanistic or value-oriented side of philosophy, Lewis never lost touch with ^ his deep concern with the human condition, nor was he ever tempted to exag- gerate the importance of logic at the cost of other fields of philosophy {Mur- phey, Chs. 7 and 8). He never called logic "the essence of philosophy". Logic Includes Formal Ontology A second Boolean Revolution was incipient in his 1847 and 1848 works, but not fully announced until he heralded it by titling his 1854 book An Investigation of the Laws of Thought, bringing to the forefront of logic tautologies and traditional logical laws that have no immediately evident connection to deduction: e.g., identity of "indiscernibles", the law of contradiction, and the law of excluded middle for properties.
Recommended publications
  • Logical Truth, Contradictions, Inconsistency, and Logical Equivalence
    Logical Truth, Contradictions, Inconsistency, and Logical Equivalence Logical Truth • The semantical concepts of logical truth, contradiction, inconsistency, and logi- cal equivalence in Predicate Logic are straightforward adaptations of the corre- sponding concepts in Sentence Logic. • A closed sentence X of Predicate Logic is logically true, X, if and only if X is true in all interpretations. • The logical truth of a sentence is proved directly using general reasoning in se- mantics. • Given soundness, one can also prove the logical truth of a sentence X by provid- ing a derivation with no premises. • The result of the derivation is that X is theorem, ` X. An Example • (∀x)Fx ⊃ (∃x)Fx. – Suppose d satisfies ‘(∀x)Fx’. – Then all x-variants of d satisfy ‘Fx’. – Since the domain D is non-empty, some x-variant of d satisfies ‘Fx’. – So d satisfies ‘(∃x)Fx’ – Therefore d satisfies ‘(∀x)Fx ⊃ (∃x)Fx’, QED. • ` (∀x)Fx ⊃ (∃x)Fx. 1 (∀x)Fx P 2 Fa 1 ∀ E 3 (∃x)Fx 1 ∃ I Contradictions • A closed sentence X of Predicate Logic is a contradiction if and only if X is false in all interpretations. • A sentence X is false in all interpretations if and only if its negation ∼X is true on all interpretations. • Therefore, one may directly demonstrate that a sentence is a contradiction by proving that its negation is a logical truth. • If the ∼X of a sentence is a logical truth, then given completeness, it is a theorem, and hence ∼X can be derived from no premises. 1 • If a sentence X is such that if it is true in any interpretation, both Y and ∼Y are true in that interpretation, then X cannot be true on any interpretation.
    [Show full text]
  • Pluralisms About Truth and Logic Nathan Kellen University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Pluralisms about Truth and Logic Nathan Kellen University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Kellen, Nathan, "Pluralisms about Truth and Logic" (2019). Doctoral Dissertations. 2263. https://opencommons.uconn.edu/dissertations/2263 Pluralisms about Truth and Logic Nathan Kellen, PhD University of Connecticut, 2019 Abstract: In this dissertation I analyze two theories, truth pluralism and logical pluralism, as well as the theoretical connections between them, including whether they can be combined into a single, coherent framework. I begin by arguing that truth pluralism is a combination of realist and anti-realist intuitions, and that we should recognize these motivations when categorizing and formulating truth pluralist views. I then introduce logical functionalism, which analyzes logical consequence as a functional concept. I show how one can both build theories from the ground up and analyze existing views within the functionalist framework. One upshot of logical functionalism is a unified account of logical monism, pluralism and nihilism. I conclude with two negative arguments. First, I argue that the most prominent form of logical pluralism faces a serious dilemma: it either must give up on one of the core principles of logical consequence, and thus fail to be a theory of logic at all, or it must give up on pluralism itself. I call this \The Normative Problem for Logical Pluralism", and argue that it is unsolvable for the most prominent form of logical pluralism. Second, I examine an argument given by multiple truth pluralists that purports to show that truth pluralists must also be logical pluralists.
    [Show full text]
  • Misconceived Relationships Between Logical Positivism and Quantitative Research: an Analysis in the Framework of Ian Hacking
    DOCUMENT RESUME ED 452 266 TM 032 553 AUTHOR Yu, Chong Ho TITLE Misconceived Relationships between Logical Positivism and Quantitative Research: An Analysis in the Framework of Ian Hacking. PUB DATE 2001-04-07 NOTE 26p. PUB TYPE Opinion Papers (120) ED 2S PRICE MF01/PCO2 Plus Postage. 'DESCRIPTORS *Educational Research; *Research Methodology IDENTIFIERS *Logical Positivism ABSTRACT Although quantitative research methodology is widely applied by psychological researchers, there is a common misconception that quantitative research is based on logical positivism. This paper examines the relationship between quantitative research and eight major notions of logical positivism:(1) verification;(2) pro-observation;(3) anti-cause; (4) downplaying explanation;(5) anti-theoretical entities;(6) anti-metaphysics; (7) logical analysis; and (8) frequentist probability. It is argued that the underlying philosophy of modern quantitative research in psychology is in sharp contrast to logical positivism. Putting the labor of an out-dated philosophy into quantitative research may discourage psychological researchers from applying this research approach and may also lead to misguided dispute between quantitative and qualitative researchers. What is needed is to encourage researchers and students to keep an open mind to different methodologies and apply skepticism to examine the philosophical assumptions instead of accepting them unquestioningly. (Contains 1 figure and 75 references.)(Author/SLD) Reproductions supplied by EDRS are the best that can be made from the original document. Misconceived relationships between logical positivism and quantitative research: An analysis in the framework of Ian Hacking Chong Ho Yu, Ph.D. Arizona State University April 7, 2001 N N In 4-1 PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIALHAS BEEN GRANTED BY Correspondence: TO THE EDUCATIONAL RESOURCES Chong Ho Yu, Ph.D.
    [Show full text]
  • The Analytic-Synthetic Distinction and the Classical Model of Science: Kant, Bolzano and Frege
    Synthese (2010) 174:237–261 DOI 10.1007/s11229-008-9420-9 The analytic-synthetic distinction and the classical model of science: Kant, Bolzano and Frege Willem R. de Jong Received: 10 April 2007 / Revised: 24 July 2007 / Accepted: 1 April 2008 / Published online: 8 November 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract This paper concentrates on some aspects of the history of the analytic- synthetic distinction from Kant to Bolzano and Frege. This history evinces con- siderable continuity but also some important discontinuities. The analytic-synthetic distinction has to be seen in the first place in relation to a science, i.e. an ordered system of cognition. Looking especially to the place and role of logic it will be argued that Kant, Bolzano and Frege each developed the analytic-synthetic distinction within the same conception of scientific rationality, that is, within the Classical Model of Science: scientific knowledge as cognitio ex principiis. But as we will see, the way the distinction between analytic and synthetic judgments or propositions functions within this model turns out to differ considerably between them. Keywords Analytic-synthetic · Science · Logic · Kant · Bolzano · Frege 1 Introduction As is well known, the critical Kant is the first to apply the analytic-synthetic distinction to such things as judgments, sentences or propositions. For Kant this distinction is not only important in his repudiation of traditional, so-called dogmatic, metaphysics, but it is also crucial in his inquiry into (the possibility of) metaphysics as a rational science. Namely, this distinction should be “indispensable with regard to the critique of human understanding, and therefore deserves to be classical in it” (Kant 1783, p.
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • The Etienne Gilson Series 21
    The Etienne Gilson Series 21 Remapping Scholasticism by MARCIA L. COLISH 3 March 2000 Pontifical Institute of Mediaeval Studies This lecture and its publication was made possible through the generous bequest of the late Charles J. Sullivan (1914-1999) Note: the author may be contacted at: Department of History Oberlin College Oberlin OH USA 44074 ISSN 0-708-319X ISBN 0-88844-721-3 © 2000 by Pontifical Institute of Mediaeval Studies 59 Queen’s Park Crescent East Toronto, Ontario, Canada M5S 2C4 Printed in Canada nce upon a time there were two competing story-lines for medieval intellectual history, each writing a major role for scholasticism into its script. Although these story-lines were O created independently and reflected different concerns, they sometimes overlapped and gave each other aid and comfort. Both exerted considerable influence on the way historians of medieval speculative thought conceptualized their subject in the first half of the twentieth cen- tury. Both versions of the map drawn by these two sets of cartographers illustrated what Wallace K. Ferguson later described as “the revolt of the medievalists.”1 One was confined largely to the academy and appealed to a wide variety of medievalists, while the other had a somewhat narrower draw and reflected political and confessional, as well as academic, concerns. The first was the anti-Burckhardtian effort to push Renaissance humanism, understood as combining a knowledge and love of the classics with “the discovery of the world and of man,” back into the Middle Ages. The second was inspired by the neo-Thomist revival launched by Pope Leo XIII, and was inhabited almost exclusively by Roman Catholic scholars.
    [Show full text]
  • Yuji NISHIYAMA in This Article We Shall Focus Our Attention Upon
    The Notion of Presupposition* Yuji NISHIYAMA Keio University In this article we shall focus our attention upon the clarificationof the notion of presupposition;First, we shall be concerned with what kind of notion is best understood as the proper notion of presupposition that grammars of natural languageshould deal with. In this connection,we shall defend "logicalpresupposi tion". Second, we shall consider how to specify the range of X and Y in the presuppositionformula "X presupposes Y". Third, we shall discuss several difficultieswith the standard definition of logical presupposition. In connection with this, we shall propose a clear distinction between "the definition of presupposi tion" and "the rule of presupposition". 1. The logical notion of presupposition What is a presupposition? Or, more particularly, what is the alleged result of a presupposition failure? In spite of the attention given to it, this question can hardly be said to have been settled. Various answers have been suggested by the various authors: inappropriate use of a sentence, failure to perform an illocutionary act, anomaly, ungrammaticality, unintelligibility, infelicity, lack of truth value-each has its advocates. Some of the apparent disagreementmay be only a notational and terminological, but other disagreement raises real, empirically significant, theoretical questions regarding the relationship between logic and language. However, it is not the aim of this article to straighten out the various proposals about the concept of presupposition. Rather, we will be concerned with one notion of presupposition,which stems from Frege (1892)and Strawson (1952),that is: (1) presupposition is a condition under which a sentence expressing an assertive proposition can be used to make a statement (or can bear a truth value)1 We shall call this notion of presupposition "the statementhood condition" or "the conditionfor bivalence".
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Laws of Thought and Laws of Logic After Kant”1
    “Laws of Thought and Laws of Logic after Kant”1 Published in Logic from Kant to Russell, ed. S. Lapointe (Routledge) This is the author’s version. Published version: https://www.routledge.com/Logic-from-Kant-to- Russell-Laying-the-Foundations-for-Analytic-Philosophy/Lapointe/p/book/9781351182249 Lydia Patton Virginia Tech [email protected] Abstract George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of thought acquire normative force when constrained to mathematical reasoning. Boole’s motivation is, first, to address issues in the foundations of mathematics, including the relationship between arithmetic and algebra, and the study and application of differential equations (Durand-Richard, van Evra, Panteki). Second, Boole intended to derive the laws of logic from the laws of the operation of the human mind, and to show that these laws were valid of algebra and of logic both, when applied to a restricted domain. Boole’s thorough and flexible work in these areas influenced the development of model theory (see Hodges, forthcoming), and has much in common with contemporary inferentialist approaches to logic (found in, e.g., Peregrin and Resnik). 1 I would like to thank Sandra Lapointe for providing the intellectual framework and leadership for this project, for organizing excellent workshops that were the site for substantive collaboration with others working on this project, and for comments on a draft.
    [Show full text]
  • Logical Consequence: a Defense of Tarski*
    GREG RAY LOGICAL CONSEQUENCE: A DEFENSE OF TARSKI* ABSTRACT. In his classic 1936 essay “On the Concept of Logical Consequence”, Alfred Tarski used the notion of XU~@~ZC~~NIto give a semantic characterization of the logical properties. Tarski is generally credited with introducing the model-theoretic chamcteriza- tion of the logical properties familiar to us today. However, in his hook, The &ncel>f of Lugid Consequence, Etchemendy argues that Tarski’s account is inadequate for quite a number of reasons, and is actually incompatible with the standard mod&theoretic account. Many of his criticisms are meant to apply to the model-theoretic account as well. In this paper, I discuss the following four critical charges that Etchemendy makes against Tarski and his account of the logical properties: (1) (a) Tarski’s account of logical consequence diverges from the standard model-theoretic account at points where the latter account gets it right. (b) Tarski’s account cannot be brought into line with the model-thcorctic account, because the two are fundamentally incompatible. (2) There are simple countcrcxamples (enumerated by Etchemcndy) which show that Tarski’s account is wrong. (3) Tarski committed a modal faIlacy when arguing that his account captures our pre-theoretical concept of logical consequence, and so obscured an essential weakness of the account. (4) Tarski’s account depends on there being a distinction between the “log- ical terms” and the “non-logical terms” of a language, but (according to Etchemendy) there are very simple (even first-order) languages for which no such distinction can be made. Etchemcndy’s critique raises historica and philosophical questions about important foun- dational work.
    [Show full text]
  • Philosophy of Logic (Routledge Revivals)
    Routledge Revivals Philosophy of Logic First published in 1971, Professor Putnam's essay concerns itself with the ontological problem in the philosophy of logic and mathematics - that is, the issue of whether the abstract entities spoken of in logic and mathematics really exist. He also deals with the question of whether or not reference to these abstract entities is really indispensible in logic and whether it is necessary in physical science in general. This page intentionally left blank Philosophy of Logic Hilary Putnam First published in the UK in 1972 by George Allen & Unwin Ltd This edition first published in 2010 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN Simultaneously published in the USA and Canada by Routledge 270 Madison Avenue, New York, NY 10016 Routledge is an imprint of the Taylor & Francis Group, an informa business © 1971 Hilary Putnam All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Publisher’s Note The publisher has gone to great lengths to ensure the quality of this reprint but points out that some imperfections in the original copies may be apparent. Disclaimer The publisher has made every effort to trace copyright holders and welcomes correspondence from those they have been unable to contact. A Library of Congress record exists under ISBN: 0041600096 ISBN 13: 978-0-415-58092-2 (hbk) ISBN 10: 0-415-58092-7 (hbk) Philosophy of Logic This page intentionally left blank This page intentionally left blank This page intentionally left blank Philosophy of Logic ••••• Hilary Putnam PHILOSOPHY OF LOGIC.
    [Show full text]
  • Logical Empiricism and the Verification Theory
    Philosophy 308: The Language Revolution Hamilton College Fall 2015 Russell Marcus Classes #14–15: Logical Empiricism and the Verification Theory I. Wittgenstein and the Logical Empiricists We started our exploration into the philosophy of language with Frege’s “On Sense and Reference.” We noted several questions about the nature of senses, but pursued reference, first. Now, we turn to senses, or meanings. In the next few weeks, we will look more closely at some attempts to define, refine, or eliminate meanings in semantic theory. As we will start with the logical empiricist’s verifiability theory of meaning, some background to logical empiricism might be useful. Frege’s work was partly a response to the metaphysical speculations widespread in nineteenth-century idealism. The logical empiricists are also responding to idealism, and speculative metaphysics generally. They were intent on ridding philosophy of what they deemed to be pseudo-problems, pseudo-questions, and meaningless language. Focused on science, they derided such concerns as: A. The meaning of life B. The existence (or non-existence) of God C. Whether the world was created, with all its historical remnants and memories, say, five minutes ago D. Why there is something rather than nothing E. Emergent evolutionary theory, and the elan vital F. Freudian psychology G. Marxist theories of history We can see the logical empiricist’s metaphysical quarry clearly, in Ayer’s derision (pp 11-12) of sentences like AL. AL The absolute is lazy. Logical empiricism is more-often called logical positivism, or just positivism. Those are misleading terms. Logical empiricism is often characterized as British empiricism (e.g.
    [Show full text]