Nominalism in the Philosophy of Mathematics (Stanford Encyclopedia of Philosophy) 9/16/13 2:21 PM

Total Page:16

File Type:pdf, Size:1020Kb

Nominalism in the Philosophy of Mathematics (Stanford Encyclopedia of Philosophy) 9/16/13 2:21 PM Nominalism in the Philosophy of Mathematics (Stanford Encyclopedia of Philosophy) 9/16/13 2:21 PM Open access to the SEP is made possible by a world-wide funding initiative. Please Read How You Can Help Keep the Encyclopedia Free Nominalism in the Philosophy of Mathematics First published Mon Sep 16, 2013 Nominalism about mathematics (or mathematical nominalism) is the view according to which either mathematical objects, relations, and structures do not exist at all, or they do not exist as abstract objects (they are neither located in space-time nor do they have causal powers). In the latter case, some suitable concrete replacement for mathematical objects is provided. Broadly speaking, there are two forms of mathematical nominalism: those views that require the reformulation of mathematical (or scientific) theories in order to avoid the commitment to mathematical objects (e.g., Field 1980; Hellman 1989), and those views that do not reformulate mathematical or scientific theories and offer instead an account of how no commitment to mathematical objects is involved when these theories are used (e.g., Azzouni 2004). Both forms of nominalism are examined, and they are assessed in light of how they address five central problems in the philosophy of mathematics (namely, problems dealing with the epistemology, the ontology, and the application of mathematics as well as the use of a uniform semantics and the proviso that mathematical and scientific theories be taken literally). 1. Two views about mathematics: nominalism and platonism 2. Five Problems 2.1 The epistemological problem of mathematics 2.2 The problem of the application of mathematics 2.3 The problem of uniform semantics 2.4 The problem of taking mathematical discourse literally 2.5 The ontological problem 3. Mathematical Fictionalism 3.1 Central features of mathematical fictionalism 3.2 Metalogic and the formulation of conservativeness 3.3 Assessment: benefits and problems of mathematical fictionalism 4. Modal Structuralism http://plato.stanford.edu/entries/nominalism-mathematics/ Page 1 of 41 Nominalism in the Philosophy of Mathematics (Stanford Encyclopedia of Philosophy) 9/16/13 2:21 PM 4.1 Central features of modal structuralism 4.2 Assessment: benefits and problems of modal structuralism 5. Deflationary Nominalism 5.1 Central features of deflationary nominalism 5.2 Assessment: benefits of deflationary nominalism and a problem Bibliography Academic Tools Other Internet Resources Related Entries 1. Two views about mathematics: nominalism and platonism In ontological discussions about mathematics, two views are prominent. According to platonism, mathematical objects (as well as mathematical relations and structures) exist and are abstract; that is, they are not located in space and time and have no causal connection with us. Although this characterization of abstract objects is purely negative— indicating what such objects are not—in the context of mathematics it captures the crucial features the objects in questions are supposed to have. According to nominalism, mathematical objects (including, henceforth, mathematical relations and structures) do not exist, or at least they need not be taken to exist for us to make sense of mathematics. So, it is the nominalist's burden to show how to interpret mathematics without the commitment to the existence of mathematical objects. This is, in fact, a key feature of nominalism: those who defend the view need to show that it is possible to yield at least as much explanatory work as the platonist obtains, but invoking a meager ontology. To achieve that, nominalists in the philosophy of mathematics forge interconnections with metaphysics (whether mathematical objects do exist), epistemology (what kind of knowledge of these entities we have), and philosophy of science (how to make sense of the successful application of mathematics in science without being committed to the existence of mathematical entities). These interconnections are one of the sources of the variety of nominalist views. Despite the substantial differences between nominalism and platonism, they have at least one feature in common: both come in many forms. There are various versions of platonism in the philosophy of mathematics: standard (or object-based) platonism (Gödel 1944, 1947; Quine 1960), structuralism (Resnik 1997; Shapiro 1997), and full-blooded platonism (Balaguer 1998), among other views. Similarly, there are also several versions of nominalism: fictionalism (Field 1980, 1989), modal structuralism (Hellman 1989, 1996), constructibilism (Chihara 1990), the weaseling-away view (Melia 1995, 2000), figuralism (Yablo 2001), deflationary nominalism (Azzouni 2004), agnostic nominalism (Bueno 2008, 2009), and pretense views (Leng 2010), among others. Similarly to their platonist http://plato.stanford.edu/entries/nominalism-mathematics/ Page 2 of 41 Nominalism in the Philosophy of Mathematics (Stanford Encyclopedia of Philosophy) 9/16/13 2:21 PM counterparts, the various nominalist proposals have different motivations, and face their own difficulties. These will be explored in turn. (A critical survey of various nominalization strategies in mathematics can be found in Burgess and Rosen (1997). The authors address in detail both the technical and philosophical issues raised by nominalism in the philosophy of mathematics.) Discussions about nominalism in the philosophy of mathematics in the 20th century started roughly with the work that W. V. Quine and Nelson Goodman developed toward constructive nominalism (Goodman and Quine 1947). But, as Quine later pointed out, in the end it was indispensable to quantify over classes (Quine 1960). As will become clear below, responses to this indispensability argument have generated a significant amount of work for nominalists. And it is the focus on the indispensability argument that largely distinguishes more recent nominalist views in the philosophy of mathematics, which I will focus on, from the nominalism developed in the early part of the 20th century by the Polish school of logic (Simons 2010). Mathematical nominalism is a form of anti-realism about abstract objects. This is an independent issue from the traditional problem of nominalism about universals. A universal, according to a widespread use, is something that can be instantiated by different entities. Since abstract objects are neither spatial nor temporal, they cannot be instantiated. Thus, mathematical nominalism and nominalism about universals are independent from one another (see the entry on nominalism in metaphysics). It could be argued that certain sets encapsulate the instantiation model, since a set of concrete objects can be instantiated by such objects. But since the same set cannot be so instantiated, given that sets are individuated by their members and as long as their members are different the resulting sets are not the same, it is not clear that even these sets are instantiated. I will focus here on mathematical nominalism. 2. Five Problems In contemporary philosophy of mathematics, nominalism has been formulated in response to difficulties faced by platonism. But in developing their responses to platonism, nominalists also encounter difficulties of their own. Five problems need to be addressed in this context: 1. The epistemological problem of mathematics, 2. The problem of the application of mathematics, 3. The problem of uniform semantics, 4. The problem of taking mathematical discourse literally, and 5. The ontological problem. http://plato.stanford.edu/entries/nominalism-mathematics/ Page 3 of 41 Nominalism in the Philosophy of Mathematics (Stanford Encyclopedia of Philosophy) 9/16/13 2:21 PM Usually, problems (1) and (5) are considered as raising difficulties for platonism, whereas problems (2), (3), and (4) are often taken as yielding difficulties for nominalism. (I will discuss below to what extent such an assessment is accurate.) Each of these problems will be examined in turn. 2.1 The epistemological problem of mathematics Given that platonism postulates the existence of mathematical objects, the question arises as to how we obtain knowledge about them. The epistemological problem of mathematics is the problem of explaining the possibility of mathematical knowledge, given that mathematical objects themselves do not seem to play any role in generating our mathematical beliefs (Field 1989). This is taken to be a particular problem for platonism, since this view postulates the existence of mathematical objects, and one would expect such objects to play a role in the acquisition of mathematical knowledge. After all, on the platonist view, such knowledge is about the corresponding mathematical objects. However, despite various sophisticated attempts by platonists, there is still considerable controversy as to how exactly this process should be articulated. Should it be understood via mathematical intuition, by the introduction of suitable mathematical principles and definitions, or does it require some form of abstraction? In turn, the epistemological issue is far less problematic for nominalists, who are not committed to the existence of mathematical objects in the first place. They will have to explain other things, such as, how can the nominalist account for the difference between a mathematician, who knows a significant amount of mathematics, and a non-mathematician, who does not? This difference, according to some nominalists, is based on empirical and logical knowledge—not on mathematical knowledge (Field 1989). 2.2 The problem
Recommended publications
  • Redalyc.Sets and Pluralities
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Gustavo Fernández Díez Sets and Pluralities Revista Colombiana de Filosofía de la Ciencia, vol. IX, núm. 19, 2009, pp. 5-22, Universidad El Bosque Colombia Available in: http://www.redalyc.org/articulo.oa?id=41418349001 Revista Colombiana de Filosofía de la Ciencia, ISSN (Printed Version): 0124-4620 [email protected] Universidad El Bosque Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Sets and Pluralities1 Gustavo Fernández Díez2 Resumen En este artículo estudio el trasfondo filosófico del sistema de lógica conocido como “lógica plural”, o “lógica de cuantificadores plurales”, de aparición relativamente reciente (y en alza notable en los últimos años). En particular, comparo la noción de “conjunto” emanada de la teoría axiomática de conjuntos, con la noción de “plura- lidad” que se encuentra detrás de este nuevo sistema. Mi conclusión es que los dos son completamente diferentes en su alcance y sus límites, y que la diferencia proviene de las diferentes motivaciones que han dado lugar a cada uno. Mientras que la teoría de conjuntos es una teoría genuinamente matemática, que tiene el interés matemático como ingrediente principal, la lógica plural ha aparecido como respuesta a considera- ciones lingüísticas, relacionadas con la estructura lógica de los enunciados plurales del inglés y el resto de los lenguajes naturales. Palabras clave: conjunto, teoría de conjuntos, pluralidad, cuantificación plural, lógica plural. Abstract In this paper I study the philosophical background of the relatively recent (and in the last few years increasingly flourishing) system of logic called “plural logic”, or “logic of plural quantifiers”.
    [Show full text]
  • Pluralisms About Truth and Logic Nathan Kellen University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Pluralisms about Truth and Logic Nathan Kellen University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Kellen, Nathan, "Pluralisms about Truth and Logic" (2019). Doctoral Dissertations. 2263. https://opencommons.uconn.edu/dissertations/2263 Pluralisms about Truth and Logic Nathan Kellen, PhD University of Connecticut, 2019 Abstract: In this dissertation I analyze two theories, truth pluralism and logical pluralism, as well as the theoretical connections between them, including whether they can be combined into a single, coherent framework. I begin by arguing that truth pluralism is a combination of realist and anti-realist intuitions, and that we should recognize these motivations when categorizing and formulating truth pluralist views. I then introduce logical functionalism, which analyzes logical consequence as a functional concept. I show how one can both build theories from the ground up and analyze existing views within the functionalist framework. One upshot of logical functionalism is a unified account of logical monism, pluralism and nihilism. I conclude with two negative arguments. First, I argue that the most prominent form of logical pluralism faces a serious dilemma: it either must give up on one of the core principles of logical consequence, and thus fail to be a theory of logic at all, or it must give up on pluralism itself. I call this \The Normative Problem for Logical Pluralism", and argue that it is unsolvable for the most prominent form of logical pluralism. Second, I examine an argument given by multiple truth pluralists that purports to show that truth pluralists must also be logical pluralists.
    [Show full text]
  • Misconceived Relationships Between Logical Positivism and Quantitative Research: an Analysis in the Framework of Ian Hacking
    DOCUMENT RESUME ED 452 266 TM 032 553 AUTHOR Yu, Chong Ho TITLE Misconceived Relationships between Logical Positivism and Quantitative Research: An Analysis in the Framework of Ian Hacking. PUB DATE 2001-04-07 NOTE 26p. PUB TYPE Opinion Papers (120) ED 2S PRICE MF01/PCO2 Plus Postage. 'DESCRIPTORS *Educational Research; *Research Methodology IDENTIFIERS *Logical Positivism ABSTRACT Although quantitative research methodology is widely applied by psychological researchers, there is a common misconception that quantitative research is based on logical positivism. This paper examines the relationship between quantitative research and eight major notions of logical positivism:(1) verification;(2) pro-observation;(3) anti-cause; (4) downplaying explanation;(5) anti-theoretical entities;(6) anti-metaphysics; (7) logical analysis; and (8) frequentist probability. It is argued that the underlying philosophy of modern quantitative research in psychology is in sharp contrast to logical positivism. Putting the labor of an out-dated philosophy into quantitative research may discourage psychological researchers from applying this research approach and may also lead to misguided dispute between quantitative and qualitative researchers. What is needed is to encourage researchers and students to keep an open mind to different methodologies and apply skepticism to examine the philosophical assumptions instead of accepting them unquestioningly. (Contains 1 figure and 75 references.)(Author/SLD) Reproductions supplied by EDRS are the best that can be made from the original document. Misconceived relationships between logical positivism and quantitative research: An analysis in the framework of Ian Hacking Chong Ho Yu, Ph.D. Arizona State University April 7, 2001 N N In 4-1 PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIALHAS BEEN GRANTED BY Correspondence: TO THE EDUCATIONAL RESOURCES Chong Ho Yu, Ph.D.
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • Collapse, Plurals and Sets 421
    doi: 10.5007/1808-1711.2014v18n3p419 COLLAPSE,PLURALS AND SETS EDUARDO ALEJANDRO BARRIO Abstract. This paper raises the question under what circumstances a plurality forms a set. My main point is that not always all things form sets. A provocative way of presenting my position is that, as a result of my approach, there are more pluralities than sets. Another way of presenting the same thesis claims that there are ways of talking about objects that do not always collapse into sets. My argument is related to expressive powers of formal languages. Assuming classical logic, I show that if all plurality form a set and the quantifiers are absolutely general, then one gets a trivial theory. So, by reductio, one has to abandon one of the premiss. Then, I argue against the collapse of the pluralities into sets. What I am advocating is that the thesis of collapse limits important applications of the plural logic in model theory, when it is assumed that the quantifiers are absolutely general. Keywords: Pluralities; absolute generality; sets; hierarchies. We often say that some things form a set. For instance, every house in Beacon Hill may form a set. Also, all antimatter particles in the universe, all even numbers, all odd numbers, and in general all natural numbers do so. Naturally, following this line of thought, one might think that the plurality of all things constitutes a set. And al- though natural language allows us, by means of its plural constructions, to talk about objects without grouping them in one entity, there are also nominalization devices to turn constructions involving high order expressive resources into others that only make use of first order ones.
    [Show full text]
  • Plurals and Mereology
    Journal of Philosophical Logic (2021) 50:415–445 https://doi.org/10.1007/s10992-020-09570-9 Plurals and Mereology Salvatore Florio1 · David Nicolas2 Received: 2 August 2019 / Accepted: 5 August 2020 / Published online: 26 October 2020 © The Author(s) 2020 Abstract In linguistics, the dominant approach to the semantics of plurals appeals to mere- ology. However, this approach has received strong criticisms from philosophical logicians who subscribe to an alternative framework based on plural logic. In the first part of the article, we offer a precise characterization of the mereological approach and the semantic background in which the debate can be meaningfully reconstructed. In the second part, we deal with the criticisms and assess their logical, linguistic, and philosophical significance. We identify four main objections and show how each can be addressed. Finally, we compare the strengths and shortcomings of the mereologi- cal approach and plural logic. Our conclusion is that the former remains a viable and well-motivated framework for the analysis of plurals. Keywords Mass nouns · Mereology · Model theory · Natural language semantics · Ontological commitment · Plural logic · Plurals · Russell’s paradox · Truth theory 1 Introduction A prominent tradition in linguistic semantics analyzes plurals by appealing to mere- ology (e.g. Link [40, 41], Landman [32, 34], Gillon [20], Moltmann [50], Krifka [30], Bale and Barner [2], Chierchia [12], Sutton and Filip [76], and Champollion [9]).1 1The historical roots of this tradition include Leonard and Goodman [38], Goodman and Quine [22], Massey [46], and Sharvy [74]. Salvatore Florio [email protected] David Nicolas [email protected] 1 Department of Philosophy, University of Birmingham, Birmingham, United Kingdom 2 Institut Jean Nicod, Departement´ d’etudes´ cognitives, ENS, EHESS, CNRS, PSL University, Paris, France 416 S.
    [Show full text]
  • Beyond Plurals
    Beyond Plurals Agust´ınRayo philosophy.ucsd.edu/arayo July 10, 2008 I have two main objectives. The first is to get a better understanding of what is at issue between friends and foes of higher-order quantification, and of what it would mean to extend a Boolos-style treatment of second-order quantification to third- and higher- order quantification. The second objective is to argue that in the presence of absolutely general quantification, proper semantic theorizing is essentially unstable: it is impossible to provide a suitably general semantics for a given language in a language of the same logical type. I claim that this leads to a trilemma: one must choose between giving up absolutely general quantification, settling for the view that adequate semantic theorizing about certain languages is essentially beyond our reach, and countenancing an open-ended hierarchy of languages of ever ascending logical type. I conclude by suggesting that the hierarchy may be the least unattractive of the options on the table. 1 Preliminaries 1.1 Categorial Semantics Throughout this paper I shall assume the following: Categorial Semantics Every meaningful sentence has a semantic structure,1 which may be represented 1 as a certain kind of tree.2 Each node in the tree falls under a particular se- mantic category (e.g. `sentence', `quantifier’, `sentential connective'), and has an intension that is appropriate for that category. The semantic category and intension of each non-terminal node in the tree is determined by the semantic categories and intensions of nodes below it. Although I won't attempt to defend Categorial Semantics here,3 two points are worth emphasizing.
    [Show full text]
  • Concrete Possible Worlds (Final)
    CONCRETE POSSIBLE WORLDS Phillip Bricker 1. INTRODUCTION. Open a book or article of contemporary analytic philosophy, and you are likely to find talk of possible worlds therein. This applies not only to analytic metaphysics, but to areas as diverse as philosophy of language, philosophy of science, epistemology, and ethics. Philosophers agree, for the most part, that possible worlds talk is extremely useful for explicating concepts and formulating theories. They disagree, however, over its proper interpretation. In this chapter, I discuss the view, championed by David Lewis, that philosophers’ talk of possible worlds is the literal truth.1 There exists a plurality of worlds. One of these is our world, the actual world, the physical universe that contains us and all our surroundings. The others are merely possible worlds containing merely possible beings, such as flying pigs and talking donkeys. But the other worlds are no less real or concrete for being merely possible. Fantastic? Yes! What could motivate a philosopher to believe such a tale? I start, as is customary, with modality.2 Truths about the world divide into two sorts: categorical and modal. Categorical truths describe how things are, what is actually the case. Modal truths describe how things could or must be, what is possibly or 1 The fullest statement of Lewis’s theory of possible worlds is contained in his magnum opus, Lewis (1986), On the Plurality of Worlds. Lewis’s view is sometimes called “modal realism.” 2 Historically, it was the attempt to provide semantics for modal logic that catapulted possible worlds to the forefront of analytic philosophy.
    [Show full text]
  • Plural Reference.Pdf
    OUP UNCORRECTED PROOF – FIRST PROOF, 11/12/2015, SPi Plurality and Unity Dictionary: NOSD 0002624321.INDD 1 11/12/2015 3:07:20 PM OUP UNCORRECTED PROOF – FIRST PROOF, 11/12/2015, SPi Dictionary: NOSD 0002624321.INDD 2 11/12/2015 3:07:20 PM OUP UNCORRECTED PROOF – FIRST PROOF, 11/12/2015, SPi Plurality and Unity Logic, Philosophy, and Linguistics !"#$!" %& Massimiliano Carrara, Alexandra Arapinis, and Friederike Moltmann Dictionary: NOSD 0002624321.INDD 3 11/12/2015 3:07:20 PM OUP UNCORRECTED PROOF – FIRST PROOF, 11/12/2015, SPi Great Clarendon Street, Oxford, OX' (DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © the several contributors ')*( +e moral rights of the authors have been asserted First Edition published in ')*( Impression: * All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press *,- Madison Avenue, New York, NY *))*(, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: ')*.,//0/.
    [Show full text]
  • David Lewis's Place in Analytic Philosophy Scott Soames by The
    David Lewis’s Place in Analytic Philosophy Scott Soames By the early 1970s, and continuing through 2001, David Lewis and Saul Kripke had taken over W.V.O. Quine’s leadership in metaphysics, epistemology, philosophy of language, and philosophical logic in the English-speaking world. Quine, in turn, had inherited his position in the early 1950s from Rudolf Carnap, who had been the leading logical positivist -- first in Europe, and, after 1935, in America. A renegade positivist himself, Quine eschewed apriority, necessity, and analyticity, while (for a time) adopting a holistic version of verificationism. Like Carnap, he placed philosophical logic and the philosophy of science at the center of philosophy. While not entirely avoiding metaphysics and epistemology, he tried to “naturalize” both. By contrast, Lewis and Kripke embraced the modalities Quine rejected.1 They also had no sympathy for his early verificationism, or his twin flights from intension and intention. As for philosophy of science, it was transforming itself into specialized philosophies of the several sciences, and did not lend itself to unified treatment. Although Lewis had deep interests in scientific issues, and was commendably realist about science in general, science itself was not the center of own distinctive approach to philosophy. Despite similarities in their opposition to Quine, the differences between Lewis and Kripke were large – especially in the semantics and metaphysics of modality. They also had different philosophical styles. Whereas Lewis was a wide-ranging thinker who pieced together a systematic philosophical world view, Kripke gave little thought to system, focusing instead on a few central topics. There is, therefore, no conflict between the two on many of the issues on which Kripke was silent.
    [Show full text]
  • Philosophy of Logic (Routledge Revivals)
    Routledge Revivals Philosophy of Logic First published in 1971, Professor Putnam's essay concerns itself with the ontological problem in the philosophy of logic and mathematics - that is, the issue of whether the abstract entities spoken of in logic and mathematics really exist. He also deals with the question of whether or not reference to these abstract entities is really indispensible in logic and whether it is necessary in physical science in general. This page intentionally left blank Philosophy of Logic Hilary Putnam First published in the UK in 1972 by George Allen & Unwin Ltd This edition first published in 2010 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN Simultaneously published in the USA and Canada by Routledge 270 Madison Avenue, New York, NY 10016 Routledge is an imprint of the Taylor & Francis Group, an informa business © 1971 Hilary Putnam All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Publisher’s Note The publisher has gone to great lengths to ensure the quality of this reprint but points out that some imperfections in the original copies may be apparent. Disclaimer The publisher has made every effort to trace copyright holders and welcomes correspondence from those they have been unable to contact. A Library of Congress record exists under ISBN: 0041600096 ISBN 13: 978-0-415-58092-2 (hbk) ISBN 10: 0-415-58092-7 (hbk) Philosophy of Logic This page intentionally left blank This page intentionally left blank This page intentionally left blank Philosophy of Logic ••••• Hilary Putnam PHILOSOPHY OF LOGIC.
    [Show full text]
  • Topics in Philosophical Logic
    Topics in Philosophical Logic The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Litland, Jon. 2012. Topics in Philosophical Logic. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9527318 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA © Jon Litland All rights reserved. Warren Goldfarb Jon Litland Topics in Philosophical Logic Abstract In “Proof-Theoretic Justification of Logic”, building on work by Dummett and Prawitz, I show how to construct use-based meaning-theories for the logical constants. The assertability-conditional meaning-theory takes the meaning of the logical constants to be given by their introduction rules; the consequence-conditional meaning-theory takes the meaning of the log- ical constants to be given by their elimination rules. I then consider the question: given a set of introduction (elimination) rules , what are the R strongest elimination (introduction) rules that are validated by an assertabil- ity (consequence) conditional meaning-theory based on ? I prove that the R intuitionistic introduction (elimination) rules are the strongest rules that are validated by the intuitionistic elimination (introduction) rules. I then prove that intuitionistic logic is the strongest logic that can be given either an assertability-conditional or consequence-conditional meaning-theory. In “Grounding Grounding” I discuss the notion of grounding. My discus- sion revolves around the problem of iterated grounding-claims.
    [Show full text]