A Long‐Term Broadcast Ephemeris Model for Extended Operation Of

Total Page:16

File Type:pdf, Size:1020Kb

A Long‐Term Broadcast Ephemeris Model for Extended Operation Of Received: 7 August 2020 Revised: 12 October 2020 Accepted: 13 October 2020 DOI: 10.1002/navi.404 ORIGINAL ARTICLE A long-term broadcast ephemeris model for extended operation of GNSS satellites Oliver Montenbruck Peter Steigenberger Moritz Aicher Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Space Abstract Operations Center (GSOC), 82234 GNSS positioning relies on orbit and clock information, which is predicted on Weßling, Germany the ground and transmitted by the individual satellites as part of their broadcast Correspondence navigation message. For an increased autonomy of either the space or user seg- Oliver Montenbruck, DLR/GSOC, ment, the capability to predict a GNSS satellite orbit over extended periods of up Münchener Str. 20, 82234 Weßling, Germany. to two weeks is studied. A tailored force model for numerical orbit propagation Email: [email protected] is proposed that offers high accuracy but can still be used in real-time environ- ments. Using the Galileo constellation with its high-grade hydrogen maser clocks as an example, global average signal-in-space range errors of less than 25 m RMS and 3D position errors of less than about 50 m are demonstrated after two-week predictions in 95% of all test cases over a half-year period. The autonomous orbit prediction model thus enables adequate quality for a rapid first fix or contingency navigation in case of lacking ground segment updates. KEYWORDS autonomy, broadcast ephemeris, Earth orientation parameters, force model, GNSS, orbit pre- diction, SISRE 1 INTRODUCTION Current GNSSs thus largely depend on the availability of ground-based orbit determination and time synchroniza- Positioning in global navigation satellite systems (GNSSs) tion (OTDS) as well as regular upload capability to supply is enabled through pseudo-distance measurements to at orbit and clock information to the users. A greater inde- least four tracked satellites along with knowledge of the pendence can be achieved through autonomous onboard satellites’ positions and clock offsets (Langley et al., 2017). orbit determination based on measurements with inter- The latter information is made available in the form satellite links (ISLs; Ananda et al., 1990)butisnotgener- of broadcast ephemerides transmitted by each individ- ally available in today’s GNSSs. GPS has implemented ISLs ual satellite as part of its navigation message. Broadcast in Block IIR (Rajan, 2002), Block IIF (Fisher & Ghasemi, ephemerides describe the orbital motion and clock offset 1999),andGPSIII(Maineetal.,2003) satellites, but it is variation through a small set of parameters over a limited not publicly disclosed whether and to what extent they validity range of less than a few hours. Batches of multi- can also be used for an autonomous onboard generation ple ephemeris data sets covering a larger period of time are of ephemeris data. BeiDou has implemented ISLs with pre- obtained from orbit and clock determination and predic- cise ranging capability on all satellites of the BDS-3 constel- tion in the ground segment and routinely uploaded to the lation (Wang et al., 2019;Yangetal.,2019;Zhouetal.,2018) GNSS satellites. Depending on the constellation architec- and makes use of such measurements in the ground-based ture, this information is refreshed on representative time ODTS process. Even though autonomous navigation con- scales of one hour to a day. cepts based on these ISLs are addressed in various studies NAVIGATION. 2020;1–17. wileyonlinelibrary.com/journal/navi © 2020 Institute of Navigation 1 2 MONTENBRUCK et al. (see, e.g., Tang et al., 2018; Guo et al., 2020), their onboard Numerical orbit propagation of GPS and GLONASS was implementation status is unclear. Galileo considers ISLs to studied earlier in Seppänen et al. (2012)asameansto enhance the ODTS process for next generation satellites reduce the time-to-first-fix of consumer grade receivers in (Fernandez et al., 2010; Amarillo Fernandez, 2011), but it the absence of network assistance. Here, prediction peri- is likewise open whether ISL measurements will also be ods of up to four days were considered and clock stability used for autonomous on-board orbit determination. was identified as a key limitation for the achievable SISRE In the absence of full-featured autonomous orbit deter- and the resulting positioning accuracy. mination and prediction capability (“autonav”), a routine In the present study, we assess necessary force model upload of broadcast ephemeris fitted to a long-term orbit improvements to bridge periods without broadcast prediction can be used as a backup in case of the extended ephemerides of up to 14 days through numerical orbit loss of contact between the control segment and a GNSS prediction. The related error budgets in terms of orbit satellite. A corresponding “extended mode” is defined errors, SISRE, and single point positioning (SPP) per- in GPS (IS-GPS-200K, 2019), during which the satellites formance are discussed. As a reference case, we select provide a ranging capability with reduced performance the Galileo constellation, which does not presently offer for at least 14 days after the last successful upload. The ISLs or autonav capabilities, but is particularly promising globally averaged signal-in-space range error (SISRE) in terms of long-term orbit and clock modeling. Among degrades gracefully over time and is specified to remain others, Galileo employs a highly homogeneous constel- below a 95th-percentile value of 388 m throughout this lation in terms of satellite platforms, which facilitates two-week period (DOD, 2020). This value includes orbit the use of a common dynamical model in a long-term and clock contributions and represents an upper limit orbit propagator. In addition, Galileo offers highly stable for the overall constellation performance. In practice, a atomic frequency standards, which helps to confine notably better performance has been demonstrated in a the respective SISRE contribution. On the other hand, 70-day long-term propagation test conducted with the Galileo involves a pair of satellites in moderately eccentric GPS III-1 satellite in mid-2019. Here, worst-user-location orbits, which provide additional insight into the capa- SISRE values remained below 45 m after 20 days and bilities of numerical as opposed to analytical long-term below 600 m after 70 days (Steigenberger et al., 2020). orbit models. While the daily upload of broadcast ephemeris batches We start this study with an assessment of the Galileo covering a long period of time can address the needs orbit prediction accuracy that can be achieved with state- of extended operations, it implies a high uplink capac- of-the-art models considering a ground-based GNSS orbit ity and adequate onboard storage. Even though improved determination and subsequent prediction. The respective ephemeris compression techniques may contribute to a results are used to identify actual limits in the long-term reduction of the required data volume, they are not predictability of a GNSS orbit and provide a reference for expected to change this situation in a fundamental man- the performance assessment of a simplified (analytical or ner and would also require a change of the established numerical) orbit propagator. ephemeris models and representation. In a second step, a tailored force model is identified Within this study, we consider the feasibility of long- that can be used to propagate a GNSS satellite orbit term ephemeris prediction through numerical integration. based on an initial state-vector and auxiliary parameters Other than analytical models, numerical orbit models can from a ground-based orbit determination process. Aside provide a close-to-reality representation of forces acting on from a trade-off of gravitational force models, a combined a GNSS satellite and are therefore well suited to describe analytical-plus-empirical solar radiation pressure (SRP) orbital perturbations over extended periods. In accord with model is presented to offer an adequate representation of practical needs, propagation errors in numerical orbit pre- non-gravitational contributions. Finally, a numerical inte- diction are close to zero near the reference epoch and gration scheme is identified that combines low complexity grow gradually over time. This is different from analytical with proper efficiency and is thus well suited to be used orbit models based on “general perturbation” theories that on receiver or on-board processors with limited computa- exhibit a model-dependent best-fit error at all times due tional capabilities. to a simplified representation of short-periodic perturba- Conceptually, the numerical orbit propagator can be tions. In principle, a single state vector and a limited set executed inside a GNSS satellite to provide real-time infor- of auxiliary parameters, such as force model coefficients mation on its own instantaneous position and velocity or, and Earth orientation parameters, can be used to predict a alternatively, inside a user receiver to compute the orbits GNSS orbit over “arbitrary” times with the graceful degra- of the entire constellation at a time. Given the computa- dation of accuracy. tional effort associated with long-term orbit integration, MONTENBRUCK et al. 3 TABLE 1 Processing standards for Galileo orbit determination and prediction Data, models, algorithms Precise Tailored Observations Dual-frequency code and phase observations from Cartesian satellite positions 80 globally distributed monitoring stations of the International GNSS Service
Recommended publications
  • GPS Applications in Space
    Space Situational Awareness 2015: GPS Applications in Space James J. Miller, Deputy Director Policy & Strategic Communications Division May 13, 2015 GPS Extends the Reach of NASA Networks to Enable New Space Ops, Science, and Exploration Apps GPS Relative Navigation is used for Rendezvous to ISS GPS PNT Services Enable: • Attitude Determination: Use of GPS enables some missions to meet their attitude determination requirements, such as ISS • Real-time On-Board Navigation: Enables new methods of spaceflight ops such as rendezvous & docking, station- keeping, precision formation flying, and GEO satellite servicing • Earth Sciences: GPS used as a remote sensing tool supports atmospheric and ionospheric sciences, geodesy, and geodynamics -- from monitoring sea levels and ice melt to measuring the gravity field ESA ATV 1st mission JAXA’s HTV 1st mission Commercial Cargo Resupply to ISS in 2008 to ISS in 2009 (Space-X & Cygnus), 2012+ 2 Growing GPS Uses in Space: Space Operations & Science • NASA strategic navigation requirements for science and 20-Year Worldwide Space Mission space ops continue to grow, especially as higher Projections by Orbit Type* precisions are needed for more complex operations in all space domains 1% 5% Low Earth Orbit • Nearly 60%* of projected worldwide space missions 27% Medium Earth Orbit over the next 20 years will operate in LEO 59% GeoSynchronous Orbit – That is, inside the Terrestrial Service Volume (TSV) 8% Highly Elliptical Orbit Cislunar / Interplanetary • An additional 35%* of these space missions that will operate at higher altitudes will remain at or below GEO – That is, inside the GPS/GNSS Space Service Volume (SSV) Highly Elliptical Orbits**: • In summary, approximately 95% of projected Example: NASA MMS 4- worldwide space missions over the next 20 years will satellite constellation.
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • GEO, MEO, and LEO How Orbital Altitude Impacts Network Performance in Satellite Data Services
    GEO, MEO, AND LEO How orbital altitude impacts network performance in satellite data services COMMUNICATION OVER SATELLITE “An entire multi-orbit is now well accepted as a key enabler across the telecommunications industry. Satellite networks can supplement existing infrastructure by providing global reach satellite ecosystem is where terrestrial networks are unavailable or not feasible. opening up above us, But not all satellite networks are created equal. Providers offer different solutions driving new opportunities depending on the orbits available to them, and so understanding how the distance for high-performance from Earth affects performance is crucial for decision making when selecting a satellite service. The following pages give an overview of the three main orbit gigabit connectivity and classes, along with some of the principal trade-offs between them. broadband services.” Stewart Sanders Executive Vice President of Key terms Technology at SES GEO – Geostationary Earth Orbit. NGSO – Non-Geostationary Orbit. NGSO is divided into MEO and LEO. MEO – Medium Earth Orbit. LEO – Low Earth Orbit. HTS – High Throughput Satellites designed for communication. Latency – the delay in data transmission from one communication endpoint to another. Latency-critical applications include video conferencing, mobile data backhaul, and cloud-based business collaboration tools. SD-WAN – Software-Defined Wide Area Networking. Based on policies controlled by the user, SD-WAN optimises network performance by steering application traffic over the most suitable access technology and with the appropriate Quality of Service (QoS). Figure 1: Schematic of orbital altitudes and coverage areas GEOSTATIONARY EARTH ORBIT Altitude 36,000km GEO satellites match the rotation of the Earth as they travel, and so remain above the same point on the ground.
    [Show full text]
  • Orbital Debris Mitigation Standard Practices (ODMSP) Were Established in 2001 to Address the Increase in Orbital Debris in the Near-Earth Space Environment
    U.S. Government Orbital Debris Mitigation Standard Practices, November 2019 Update PREAMBLE The United States Government (USG) Orbital Debris Mitigation Standard Practices (ODMSP) were established in 2001 to address the increase in orbital debris in the near-Earth space environment. The goal of the ODMSP was to limit the generation of new, long-lived debris by the control of debris released during normal operations, minimizing debris generated by accidental explosions, the selection of safe flight profile and operational configuration to minimize accidental collisions, and postmission disposal of space structures. While the original ODMSP adequately protected the space environment at the time, the USG recognizes that it is in the interest of all nations to minimize new debris and mitigate effects of existing debris. This fact, along with increasing numbers of space missions, highlights the need to update the ODMSP and to establish standards that can inform development of international practices. This 2019 update includes improvements to the original objectives as well as clarification and additional standard practices for certain classes of space operations. The improvements consist of a quantitative limit on debris released during normal operations, a probability limit on accidental explosions, probability limits on accidental collisions with large and small debris, and a reliability threshold for successful postmission disposal. The new standard practices established in the update include the preferred disposal options for immediate removal of structures from the near-Earth space environment, a low-risk geosynchronous Earth orbit (GEO) transfer disposal option, a long-term reentry option, and improved move-away-and-stay-away storage options in medium Earth orbit (MEO) and above GEO.
    [Show full text]
  • SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS
    www.myreaders.info www.myreaders.info Return to Website SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS RC Chakraborty (Retd), Former Director, DRDO, Delhi & Visiting Professor, JUET, Guna, www.myreaders.info, [email protected], www.myreaders.info/html/orbital_mechanics.html, Revised Dec. 16, 2015 (This is Sec. 5, pp 164 - 192, of Orbital Mechanics - Model & Simulation Software (OM-MSS), Sec 1 to 10, pp 1 - 402.) OM-MSS Page 164 OM-MSS Section - 5 -------------------------------------------------------------------------------------------------------43 www.myreaders.info SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS Satellite Ephemeris is Expressed either by 'Keplerian elements' or by 'State Vectors', that uniquely identify a specific orbit. A satellite is an object that moves around a larger object. Thousands of Satellites launched into orbit around Earth. First, look into the Preliminaries about 'Satellite Orbit', before moving to Satellite Ephemeris data and conversion utilities of the OM-MSS software. (a) Satellite : An artificial object, intentionally placed into orbit. Thousands of Satellites have been launched into orbit around Earth. A few Satellites called Space Probes have been placed into orbit around Moon, Mercury, Venus, Mars, Jupiter, Saturn, etc. The Motion of a Satellite is a direct consequence of the Gravity of a body (earth), around which the satellite travels without any propulsion. The Moon is the Earth's only natural Satellite, moves around Earth in the same kind of orbit. (b) Earth Gravity and Satellite Motion : As satellite move around Earth, it is pulled in by the gravitational force (centripetal) of the Earth. Contrary to this pull, the rotating motion of satellite around Earth has an associated force (centrifugal) which pushes it away from the Earth.
    [Show full text]
  • Signal in Space Error and Ephemeris Validity Time Evaluation of Milena and Doresa Galileo Satellites †
    sensors Article Signal in Space Error and Ephemeris Validity Time Evaluation of Milena and Doresa Galileo Satellites † Umberto Robustelli * , Guido Benassai and Giovanni Pugliano Department of Engineering, Parthenope University of Naples, 80143 Napoli, Italy; [email protected] (G.B.); [email protected] (G.P.) * Correspondence: [email protected] † This paper is an extended version of our paper published in the 2018 IEEE International Workshop on Metrology for the Sea proceedings entitled “Accuracy evaluation of Doresa and Milena Galileo satellites broadcast ephemeris”. Received: 14 March 2019; Accepted: 11 April 2019; Published: 14 April 2019 Abstract: In August 2016, Milena (E14) and Doresa (E18) satellites started to broadcast ephemeris in navigation message for testing purposes. If these satellites could be used, an improvement in the position accuracy would be achieved. A small error in the ephemeris would impact the accuracy of positioning up to ±2.5 m, thus orbit error must be assessed. The ephemeris quality was evaluated by calculating the SISEorbit (in orbit Signal In Space Error) using six different ephemeris validity time thresholds (14,400 s, 10,800 s, 7200 s, 3600 s, 1800 s, and 900 s). Two different periods of 2018 were analyzed by using IGS products: DOYs 52–71 and DOYs 172–191. For the first period, two different types of ephemeris were used: those received in IGS YEL2 station and the BRDM ones. Milena (E14) and Doresa (E18) satellites show a higher SISEorbit than the others. If validity time is reduced, the SISEorbit RMS of Milena (E14) and Doresa (E18) greatly decreases differently from the other satellites, for which the improvement, although present, is small.
    [Show full text]
  • Broadcast Ephemeris Model of the Beidou Navigation Satellite System
    JOURNAL OF Journal of Engineering Science and Technology Review 10 (4) (2017) 65-71 Engineering Science and estr Technology Review J Research Article www.jestr.org Broadcast Ephemeris Model of the BeiDou Navigation Satellite System Xie Xiaogang* and Lu Mingquan Department of Electronic Engineering, Tsinghua University, Beijing 100084, China Received 2 March 2017; Accepted 1 August 2017 ___________________________________________________________________________________________ Abstract The BeiDou Navigation Satellite System (BDS) space constellation is composed of geostationary earth orbit (GEO), medium earth orbit (MEO), and inclined geosynchronous satellite orbit (IGSO) satellites, all of which adopt the Global Positioning System (GPS) broadcast ephemeris model of the United States of America (U.S.A). However, in the case of small eccentricity and small orbit inclination angle, the coefficient matrix is non-positive when fitting the broadcast ephemeris parameters due to the fuzzy definition of a few Keplerian orbit elements, thereby resulting in low precision or even failure. This study proposed a novel broadcast ephemeris model based on the second class of non-singular orbit elements. The proposed model can address the unsuitability of the classical broadcast ephemeris model in the condition of small eccentricity and small orbit inclination angle, and unify the broadcast ephemeris parameters user algorithm models of GEO, MEO, and IGSO. The proposed model is a 14-parameters broadcast ephemeris model constructed with the second class of non-singular orbit elements and the corresponding broadcast ephemeris parameters perturbation over time. Lastly, the proposed model was verified by precision orbit data generated by the Satellite Tool Kit (STK). Results show that the 14-parameters broadcast ephemeris model is suitable for the GEO, MEO, and IGSO satellites and has high fitting precision to fully meet the requirements of the BDS.
    [Show full text]
  • Launch and Deployment Analysis for a Small, MEO, Technology
    Launch and Deployment Analysis for a Isp = specific impulse, sec Small, MEO, Technology Demonstration k = spring constant, Nt/mm KLC = Kodiak Island Launch Complex Satellite MTO = medium transfer orbit transfer orbit 1 LEO = low earth orbit Tyson Karl Smith 2 LMA = Lockheed Martin Aerospace Stephen Anthony Whitmore M = final mass after insertion burn, kg Utah State University, Logan, UT, 84322-4130 final Mpayload = mass of payload after kick motor jettison, kg A trade study investigation the possibilities of delivering M = propellant mass consumed during a small technology-demonstration satellite to a medium prop earth orbit are presented. The satellite is to be deployed insertion burn, kg in a 19,000 km orbit with an inclination of 55°. This Mstage = mass of expended stage after jettison, payload is a technology demonstrator and thus launch kg and deployment costs are a paramount consideration. NRE = non-recurrent engineering, kg Also the payload includes classified technology, thus a Nspring = number of springs in Lightband® USA licensed launch system is mandated. All FAA- separation system licensed US launch systems are considered during a MTO = MEO transfer orbit preliminary trade analysis. This preliminary trade OSC = Orbital Sciences Corporation analysis selects Orbital Sciences Minotaur V launch R = apogee radius, km vehicle. To meet mission objective the Minotaur V 5th a stage ATK-Star 37FM motor is replaced with the Rp = perigee radius, km smaller ATK- Star 27. This new configuration allows R⊕ = local earth radius, km for payload delivery without adding an additional 6th SDL = Space Dynamics Laboratory stage kick motor. End-to-end mass budgets are SLV = space launch vehicle calculated, and a concept of operations is presented.
    [Show full text]
  • Communication Using Medium Earth Orbit (MEO) Satellites
    Radio Division Communication using Medium Earth Orbit (MEO) Satellites TELECOMMUNICATION ENGINEERING CENTER(Radio Division) 1 1. Introduction Telecommunication market is based on a demand and supply of new more and more attractive services. Telecommunication companies develop and offer new reliable broadband multimedia and interactive services for users situated in urban as well as rural and remote areas with or without robust infrastructure or whether they use a small handheld or desktop end terminal. In order to fulfill the ever growing demand of connectivity, satellite systems are also incorporated in global communications systems. The opportunities in the satellite space are mushrooming at an incredible pace in military and defense applications, broadband IP services, and ground- and space- segment products and services. Satellite systems based on their orbital location can be classified as GEO (Geostationary Earth Orbit), MEO (Medium Earth Orbit) or LEO (Low Earth Orbit). Each of these systems has its own application area. In India, the communication satellites are generally in the GEO orbit, and there are still studies and deliberations on usage of MEO and LEO communication satellites in this field. The Medium Earth Orbit (MEO) offers a greater width of satellite view and a greater proximity to the earth’s surface than the geostationary earth orbit. Global positioning systems and ionospheric sounding satellites have already operated in this orbit and the MEO will appeal to satellite missions undertaking Earth observations, communications, positioning, and scientific explorations. This paper explores general characteristics of medium earth orbit satellites (MEO) communication systems, their global deployment examples and their potential low latency applications in various segments.
    [Show full text]
  • Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100Th Centennial Educational Forum 1 History
    Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100th Centennial Educational Forum 1 History Astrology » Pseudoscience based on several systems of divination based on the premise that there is a relationship between astronomical phenomena and events in the human world. » Many cultures have attached importance to astronomical events, and the Indians, Chinese, and Mayans developed elaborate systems for predicting terrestrial events from celestial observations. » In the West, astrology most often consists of a system of horoscopes purporting to explain aspects of a person's personality and predict future events in their life based on the positions of the sun, moon, and other celestial objects at the time of their birth. » The majority of professional astrologers rely on such systems. 2 History Astronomy » Astronomy is a natural science which is the study of celestial objects (such as stars, galaxies, planets, moons, and nebulae), the physics, chemistry, and evolution of such objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explosions, gamma ray bursts, and cosmic microwave background radiation. » Astronomy is one of the oldest sciences. » Prehistoric cultures have left astronomical artifacts such as the Egyptian monuments and Nubian monuments, and early civilizations such as the Babylonians, Greeks, Chinese, Indians, Iranians and Maya performed methodical observations of the night sky. » The invention of the telescope was required before astronomy was able to develop into a modern science. » Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy and the making of calendars, but professional astronomy is nowadays often considered to be synonymous with astrophysics.
    [Show full text]
  • Artifical Earth-Orbiting Satellites
    Artifical Earth-orbiting satellites László Csurgai-Horváth Department of Broadband Infocommunications and Electromagnetic Theory The first satellites in orbit Sputnik-1(1957) Vostok-1 (1961) Jurij Gagarin Telstar-1 (1962) Kepler orbits Kepler’s laws (Johannes Kepler, 1571-1630) applied for satellites: 1.) The orbit of a satellite around the Earth is an ellipse, one focus of which coincides with the center of the Earth. 2.) The radius vector from the Earth’s center to the satellite sweeps over equal areas in equal time intervals. 3.) The squares of the orbital periods of two satellites are proportional to the cubes of their semi-major axis: a3/T2 is equal for all satellites (MEO) Kepler orbits: equatorial coordinates The Keplerian elements: uniquely describe the location and velocity of the satellite at any given point in time using equatorial coordinates r = (x, y, z) (to solve the equation of Newton’s law for gravity for a two-body problem) Z Y Elements: X Vernal equinox: a Semi-major axis : direction to the Sun at the beginning of spring e Eccentricity (length of day==length of night) i Inclination Ω Longitude of the ascending node (South to North crossing) ω Argument of perigee M Mean anomaly (angle difference of a fictitious circular vs. true elliptical orbit) Earth-centered orbits Sidereal time: Earth rotation vs. fixed stars One sidereal (astronomical) day: one complete Earth rotation around its axis (~4min shorter than a normal day) Coordinated universal time (UTC): - derived from atomic clocks Ground track of a satellite in low Earth orbit: Perturbations 1. The Earth’s radius at the poles are 20km smaller (flattening) The effects of the Earth's atmosphere Gravitational perturbations caused by the Sun and Moon Other: .
    [Show full text]
  • Debris Assessment Software User’S Guide
    JSC 64047 Debris Assessment Software User’s Guide Version 2.0 Astromaterials Research and Exploration Science Directorate Orbital Debris Program Office November 2007 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 Debris Assessment Software Version 2.0 User’s Guide NASA Lyndon B. Johnson Space Center Houston, TX November 2007 Prepared by: John N. Opiela Eric Hillary David O. Whitlock Marsha Hennigan ESCG Approved by: Kira Abercromby ESCG Project Manager Orbital Debris Program Office Approved by: Eugene Stansbery NASA/JSC Program Manager Orbital Debris Program Office Table of Contents List of Figures................................................................................................................................... iii List of Tables..................................................................................................................................... iii List of Plots ........................................................................................................................................iv 1. Introduction ................................................................................................................................1 1.1 Major Changes since DAS 1.5.3 ..........................................................................................1 1.2 Software Installation and Removal ......................................................................................2 2. DAS Main Window Features ....................................................................................................4
    [Show full text]