Scyphomedusae and Cubomedusae from the Eastern Pacific
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Funding (Total $2,552,481) $15,000 2019
CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters. -
Proteomic Analysis of the Venom of Jellyfishes Rhopilema Esculentum and Sanderia Malayensis
marine drugs Article Proteomic Analysis of the Venom of Jellyfishes Rhopilema esculentum and Sanderia malayensis 1, 2, 2 2, Thomas C. N. Leung y , Zhe Qu y , Wenyan Nong , Jerome H. L. Hui * and Sai Ming Ngai 1,* 1 State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] 2 Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (Z.Q.); [email protected] (W.N.) * Correspondence: [email protected] (J.H.L.H.); [email protected] (S.M.N.) Contributed equally. y Received: 27 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). -
V23n2a10.Pdf
218 HidrobiológicaPadilla-Serrato 2013, 23 (2): J. G.218-226 et al. Feeding of the scyphomedusa Stomolophus meleagris in the coastal lagoon Las Guásimas, northwest Mexico Alimentación de la escifomedusa Stomolophus meleagris en la laguna costera Las Guásimas, noroeste de México Jesús Guadalupe Padilla-Serrato,1 Juana López-Martínez,1 Alejandro Acevedo-Cervantes,2 Edgar Alcántara-Razo1 and Carlos Hiram Rábago-Quiroz1 1 Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Unidad Sonora, Campus Guaymas. Apdo. Postal 349. Guaymas, Sonora. 85454. México 2 Instituto Tecnológico de Guaymas (ITG), Km 4 carretera al Varadero Nacional S/N, sector Las Playitas, Guaymas, Sonora. 85480. México e-mail: [email protected] Padilla-Serrato J. G., J. López-Martínez, A. Acevedo-Cervantes, E. Alcántara-Razo and C. H. Rábago-Quiroz. 2013. Feeding of the scyphomedusa Stomolophus meleagris in the coastal lagoon Las Guásimas, northwest Mexico. Hidrobiológica 23 (2): 218-226. ABSTRACT The cannonball jellyfish (S. meleagris) has reached production levels that has led it to become an important fishery resource in Las Guásimas, Sonora, a coastal lagoon in northwestern Mexico; however, its ecological importance and role in the ecosystem remain unstudied. This contribution describes the diet composition of this species in order to reveal its trophic importance in this coastal lagoon. Up to 17 jellyfish were captured in each of three surveys (March 2008, February and April 2009), their stomachs were extracted and analyzed to determine their diet composition. The quantitative methods: frequency of occurrence (F), numeric (N), gravimetric (W) and the index of relative importance, were used to measure the diet components, and Levin´s index to measure the diet amplitude. -
Nomad Jellyfish Rhopilema Nomadica Venom Induces Apoptotic Cell
molecules Article Nomad Jellyfish Rhopilema nomadica Venom Induces Apoptotic Cell Death and Cell Cycle Arrest in Human Hepatocellular Carcinoma HepG2 Cells Mohamed M. Tawfik 1,* , Nourhan Eissa 1 , Fayez Althobaiti 2, Eman Fayad 2,* and Ali H. Abu Almaaty 1 1 Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; [email protected] (N.E.); [email protected] (A.H.A.A.) 2 Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] * Correspondence: tawfi[email protected] (M.M.T.); [email protected] (E.F.) Abstract: Jellyfish venom is a rich source of bioactive proteins and peptides with various biological activities including antioxidant, antimicrobial and antitumor effects. However, the anti-proliferative activity of the crude extract of Rhopilema nomadica jellyfish venom has not been examined yet. The present study aimed at the investigation of the in vitro effect of R. nomadica venom on liver cancer cells (HepG2), breast cancer cells (MDA-MB231), human normal fibroblast (HFB4), and human normal lung cells (WI-38) proliferation by using MTT assay. The apoptotic cell death in HepG2 cells was investigated using Annexin V-FITC/PI double staining-based flow cytometry analysis, western blot analysis, and DNA fragmentation assays. R. nomadica venom displayed significant Citation: Tawfik, M.M.; Eissa, N.; dose-dependent cytotoxicity on HepG2 cells after 48 h of treatment with IC50 value of 50 µg/mL Althobaiti, F.; Fayad, E.; Abu Almaaty, and higher toxicity (3:5-fold change) against MDA-MB231, HFB4, and WI-38 cells. -
Advances in MARINE BIOLOGY
Advances in MARINE BIOLOGY VOLUME 46 ThisPageIntentionallyLeftBlank Advances in MARINE BIOLOGY Edited by A. J. SOUTHWARD Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK P. A. TYLER School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton, SO14 3ZH, UK C. M. YOUNG Oregon Institute of Marine Biology, University of Oregon P.O. Box 5389, Charleston, Oregon 97420, USA and L. A. FUIMAN Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, Texas 78373, USA Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo This book is printed on acid-free paper. ß 2003 Elsevier Science Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. -
Publications Supported by NOAA's Office of Ocean Exploration And
1 Publications Supported by NOAA’s Office of Ocean Exploration and Research Compiled by Chris Belter, NOAA Central Library Accurate as of 17 April 2012 Journal Articles (n=454) Ahyong ST. 2008. Deepwater crabs from seamounts and chemosynthetic habitats off eastern New Zealand (Crustacea : Decapoda : Brachyura). Zootaxa(1708):1-72. Aig D, Haywood K. 2008. Through the Sea Snow: The Central Role of Videography in the Deep Gulf Wrecks Mission. International Journal of Historical Archaeology 12(2):133-145. doi:10.1007/s10761-008-0049-7 Andrews AH, Stone RP, Lundstrom CC, DeVogelaere AP. 2009. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined Pb-210 dating. Marine Ecology-Progress Series 397:173-185. doi:10.3354/meps08193 Angel MV. 2010. Towards a full inventory of planktonic Ostracoda (Crustacea) for the subtropical Northwestern Atlantic Ocean. Deep-Sea Research Part Ii-Topical Studies in Oceanography 57(24-26):2173-2188. doi:10.1016/j.dsr2.2010.09.020 Arellano SM, Young CM. 2009. Spawning, Development, and the Duration of Larval Life in a Deep-Sea Cold-Seep Mussel. Biological Bulletin 216(2):149-162. Auster PJ. 2007. Linking deep-water corals and fish populations. Bulletin of Marine Science 81:93-99. Auster PJ, Gjerde K, Heupel E, Watling L, Grehan A, Rogers AD. 2011. Definition and detection of vulnerable marine ecosystems on the high seas: problems with the "move-on" rule. ICES Journal of Marine Science 68(2):254-264. doi:10.1093/icesjms/fsq074 Auster PJ, Watling L. 2010. Beaked whale foraging areas inferred by gouges in the seafloor. -
Pelagia Benovici Sp. Nov. (Cnidaria, Scyphozoa): a New Jellyfish in the Mediterranean Sea
Zootaxa 3794 (3): 455–468 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:3DBA821B-D43C-43E3-9E5D-8060AC2150C7 Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea STEFANO PIRAINO1,2,5, GIORGIO AGLIERI1,2,5, LUIS MARTELL1, CARLOTTA MAZZOLDI3, VALENTINA MELLI3, GIACOMO MILISENDA1,2, SIMONETTA SCORRANO1,2 & FERDINANDO BOERO1, 2, 4 1Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy 2CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 3Dipartimento di Biologia e Stazione Idrobiologica Umberto D’Ancona, Chioggia, Università di Padova. 4 CNR – Istituto di Scienze Marine, Genova 5Corresponding authors: [email protected], [email protected] Abstract A bloom of an unknown semaestome jellyfish species was recorded in the North Adriatic Sea from September 2013 to early 2014. Morphological analysis of several specimens showed distinct differences from other known semaestome spe- cies in the Mediterranean Sea and unquestionably identified them as belonging to a new pelagiid species within genus Pelagia. The new species is morphologically distinct from P. noctiluca, currently the only recognized valid species in the genus, and from other doubtful Pelagia species recorded from other areas of the world. Molecular analyses of mitochon- drial cytochrome c oxidase subunit I (COI) and nuclear 28S ribosomal DNA genes corroborate its specific distinction from P. noctiluca and other pelagiid taxa, supporting the monophyly of Pelagiidae. Thus, we describe Pelagia benovici sp. -
Zootaxa, Haliclystus Californiensis, A
Zootaxa 2518: 49–59 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Haliclystus californiensis, a “new” species of stauromedusa (Cnidaria: Staurozoa) from the northeast Pacific, with a key to the species of Haliclystus AMANDA S. KAHN1, GEORGE I. MATSUMOTO2, YAYOI M. HIRANO3 & ALLEN G. COLLINS4,5 1Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039. E-mail: [email protected] 2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039. E-mail: [email protected] 3 Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522. E-mail: [email protected] 4NMFS, National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012. E-mail: [email protected] 5Corresponding Author. E-mail: [email protected] Abstract We describe Haliclystus californiensis, a new species of stauromedusa from the northeast Pacific. Haliclystus californiensis differs from other species within the genus primarily by its horseshoe-shaped anchors, but also by the presence of prominent glandular pads at the base of its outermost secondary tentacles and by geographic range. It has been found from southern to northern California in coastal waters, 10 to 30 m depth. A single specimen of the species was originally described in an unpublished dissertation; nine additional specimens have been found since that time. We provide an annotated key to the known species of Haliclystus. Key words: Haliclystus, Staurozoa, stauromedusa, Cnidaria, H. -
Coquet to St Mary's Rmcz Summary Site Report V5
Coquet to St Mary’s rMCZ Post-survey Site Report Contract Reference: MB0120 Report Number: 36 Version 5 September 2015 Project Title: Marine Protected Areas Data and Evidence Co-ordination Programme Report No 36. Title: Coquet to St Mary’s rMCZ Post-survey Site Report Defra Project Code: MB0120 Defra Contract Manager: Carole Kelly Funded by: Department for Environment, Food and Rural Affairs (Defra) Marine Science and Evidence Unit Marine Directorate Nobel House 17 Smith Square London SW1P 3JR Authorship Clare Fitzsimmons Newcastle University [email protected] Fabrice Stephenson Newcastle University [email protected] Paula Lightfoot Newcastle University [email protected] Acknowledgements We thank Chris Barrio Frojan and Markus Diesing from Cefas for reviewing earlier drafts of this report. Disclaimer: The content of this report does not necessarily reflect the views of Defra, nor is Defra liable for the accuracy of information provided, or responsible for any use of the report’s content. Although the data provided in this report have been quality assured, the final products - e.g. habitat maps – may be subject to revision following any further data provision or once they have been used in SNCB advice or assessments. Cefas Document Control Title: Coquet to St Mary’s rMCZ Post-survey Site Report Submitted to: Marine Protected Areas Survey Co-ordination & Evidence Delivery Group Date submitted: September 2015 Project Manager: David Limpenny Report compiled by: Clare Fitzsimmons, Fabrice Stephenson and -
Life Cycle of Chrysaora Fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1
Life Cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1 Chad L. Widmer2 Abstract: The life cycle of the Northeast Pacific sea nettle, Chrysaora fuscescens Brandt, 1835, is described from gametes to the juvenile medusa stage. In vitro techniques were used to fertilize eggs from field-collected medusae. Ciliated plan- ula larvae swam, settled, and metamorphosed into scyphistomae. Scyphistomae reproduced asexually through podocysts and produced ephyrae by undergoing strobilation. The benthic life history stages of C. fuscescens are compared with benthic life stages of two sympatric species, and a key to sympatric scyphome- dusa ephyrae is included. All observations were based on specimens maintained at the Monterey Bay Aquarium jelly laboratory, Monterey, California. The Northeast Pacific sea nettle, Chry- tained at the Monterey Bay Aquarium, Mon- saora fuscescens Brandt, 1835, ranges from terey, California, for over a decade, with Mexico to British Columbia and generally ap- cultures started by F. Sommer, D. Wrobel, pears along the California and Oregon coasts B. B. Upton, and C.L.W. However the life in late summer through fall (Wrobel and cycle remained undescribed. Chrysaora fusces- Mills 1998). Relatively little is known about cens belongs to the family Pelagiidae (Gersh- the biology or ecology of C. fuscescens, but win and Collins 2002), medusae of which are when present in large numbers it probably characterized as having a central stomach plays an important role in its ecosystem giving rise to completely separated and because of its high biomass (Shenker 1984, unbranched radiating pouches and without 1985). Chrysaora fuscescens eats zooplankton a ring-canal. -
American Museum Novitates
AMERICAN MUSEUM NOVITATES Number 3900, 14 pp. May 9, 2018 In situ Observations of the Meso-Bathypelagic Scyphozoan, Deepstaria enigmatica (Semaeostomeae: Ulmaridae) DAVID F. GRUBER,1, 2, 3 BRENNAN T. PHILLIPS,4 LEIGH MARSH,5 AND JOHN S. SPARKS2, 6 ABSTRACT Deepstaria enigmatica (Semaeostomeae: Ulmaridae) is one of the largest and most mysteri- ous invertebrate predators of the deep sea. Humans have encountered this jellyfish on only a few occasions and many questions related to its biology, distribution, diet, environmental toler- ances, and behavior remain unanswered. In the 45 years since its formal description, there have been few recorded observations of D. enigmatica, due to the challenging nature of encountering these delicate soft-bodied organisms. Members ofDeepstaria , which comprises two described species, D. enigmatica and D. reticulum, reside in the meso-bathypelagic region of the world’s oceans, at depths ranging from ~600 to 1750 m. Here we report observations of a large D. enigmatica (68.3 cm length × 55.7 cm diameter) using a custom color high-definition low-light imaging system mounted on a scientific remotely operated vehicle (ROV). Observations were made of a specimen capturing or “bagging” prey, and we report on the kinetics of the closing motion of its membranelike umbrella. In the same area, we also noted a Deepstaria “jelly-fall” carcass with a high density of crustaceans feeding on its tissue and surrounding the carcass. These observations provide direct evidence of singular Deepstaria carcasses acting as jelly falls, which only recently have been reported to be a significant food source in the deep sea. -
Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.