Stratigraphy, Sedimentology, and Ichnology of the Upper Cretaceous Frontier Formation in the Alkali Anticline Region, Bighorn County, Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy, Sedimentology, and Ichnology of the Upper Cretaceous Frontier Formation in the Alkali Anticline Region, Bighorn County, Wyoming University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department Atmospheric Sciences of Spring 5-23-2010 Stratigraphy, Sedimentology, and Ichnology of the Upper Cretaceous Frontier Formation in the Alkali Anticline Region, Bighorn County, Wyoming Charles K. Clark University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons Clark, Charles K., "Stratigraphy, Sedimentology, and Ichnology of the Upper Cretaceous Frontier Formation in the Alkali Anticline Region, Bighorn County, Wyoming" (2010). Dissertations & Theses in Earth and Atmospheric Sciences. 9. https://digitalcommons.unl.edu/geoscidiss/9 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. STRATIGRAPHY, SEDIMENTOLOGY, AND ICHNOLOGY OF THE UPPER CRETACEOUS FRONTIER FORMATION IN THE ALKALI ANTICLINE REGION, BIGHORN COUNTY, WYOMING. by C. Kittinger Clark A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Geosciences Under the Supervision of Professor Christopher R. Fielding Lincoln, Nebraska May, 2010 STRATIGRAPHY, SEDIMENTOLOGY, AND ICHNOLOGY OF THE UPPER CRETACEOUS FRONTIER FORMATION IN THE ALKALI ANTICLINE REGION, BIGHORN COUNTY, WYOMING. C. Kittinger Clark, M.S University of Nebraska, 2010 Adviser: Christopher R. Fielding The Upper Cretaceous Frontier Formation was studied along two strike-parallel cliff-lines in the Alkali Anticline region of the northeastern Bighorn Basin, Bighorn County, Wyoming. The unit comprises up to 145 m of mudrock, sandstone, conglomerate, and volcanic fallout sediments deposited along the western margin of the Cretaceous Western Interior Seaway (KWIS) in the mid- to late-Cenomanian. Eighteen facies, comprising six facies associations are identified from physical and biogenic sedimentary features. Sediments were deposited in open marine offshore to shoreface and subaqueous deltaic to delta platform environments. The observed trace fossil suites record departures from the archetypal ichnofacies. Such departures record environmental stresses associated with nearshore deltaic settings. Resolving the ichnological signature of these stressed nearshore settings was crucial to reconstructing the depositional environment. The Frontier Formation consists of multiple progradational and retrogradational sequences deposited during a low-frequency (high magnitude) lowstand characterized by lower-magnitude, higher- frequency fluctuations. This study reveals a complex succession of parasequences and deltaic coarsening upward successions deposited under low-accommodation conditions. Parasequence boundaries were the most useful for sub-regional correlation. Two sequence boundary candidates are identified in the Peay and Torchlight Members but they are not useful for correlating across the study area. This investigation provides new insights into the recognition and interpretation of the facies and stratigraphic architecture of nearshore sediments deposited in low accommodation settings, and provides a framework for future evaluations of similar deposits in the Western Interior Seaway. iii Copyright 2010 by Clark, C. Kittinger All rights reserved iv ACKNOWLEDGEMENTS Both the pursuit and completion of this thesis would not have been possible without the support and influence of countless educators, family, and friends. I could never compile a comprehensive list identifying these people for their numbers are too great. Nevertheless I want to convey my sincere gratitude to: my parents, Hilary and Richard Clark who never discouraged me from my pursuit of place and happiness; my siblings Chris and Hadley for their immeasurable support; the staff of the Raymond M. Alf Museum of Paleontology, namely Sadie Kingsbury, Dr. Don. Lofgren, Heather Moffat, & Kathy Sanders, for instilling within me a love for all things geology and an appreciation for the scientific method; the Colby College Geology Department for their invaluable education and research experience; the “Big Friggin Group” for providing me with unrelenting friendship and laughter; the University of Nebraska-Lincoln Geosciences Department, which afforded me countless opportunities to expand my knowledge and experience; my adviser Chris Fielding who led me in the field and was invaluable in the preparation of this work. I would additionally like to thank Dan Close at MiSwaco, and Mark Kirschbaum at the USGS for their input. Lastly, I want to acknowledge Professors David Watkins and David Loope for serving on my masters committee. v TABLE OF CONTENTS CHAPTER TITLE/SECTION PG Preface Title Page i Abstract ii Copyright iii Acknowledgements iv Table of Contents v List of Figures ix List of Tables x 1 Introduction 1 Accommodation as a Depositional Control 1 Shoreline-Detached, Linear Sand Bodies in the 2 Cretaceous Western Interior Seaway Geologic Setting 3 2 The Frontier Formation in Wyoming 6 Regional Correlation 6 Moxa Arch 6 SW Powder River Basin 8 NE Bighorn Basin 8 Geochronologic Control for the Bighorn Basin 9 Biostratigraphic Control 9 Bentonites 12 Clay Spur Bentonite 12 X-Bentonite 13 3 Introduction to Ichnology 13 vi Sedimentological and Ichnological Signatures of 14 Brackish Water Settings 4 Methods 16 5 Facies Analysis 16 Mowry Facies Association 18 Facies Mo1 18 Description 18 Interpretation 18 Facies Mo2 19 Description 19 Interpretation 19 Facies Mo3 20 Description 20 Interpretation 20 Frontier- Peay Facies Association 24 Facies P1 24 Description 24 Interpretation 25 Facies P2 26 Description 26 Interpretation 26 Facies P3 28 Description 28 Interpretation 28 Facies P4 29 Description 29 Interpretation 29 Facies P5 30 Description 30 vii Interpretation 30 Frontier- Sub-X Facies Association 31 Facies SX1 31 Description 31 Interpretation 32 Frontier- Alkali Facies Association 34 Facies A1 34 Description 34 Interpretation 35 Facies A2 35 Description 35 Interpretation 36 Facies A3 37 Description 37 Interpretation 37 Facies A4 38 Description 38 Interpretation 38 Frontier- Torchlight Facies Association 39 Facies T1 39 Description 39 Interpretation 41 Facies T2 41 Description 41 Interpretation 42 Facies T3 42 Description 42 Interpretation 42 Frontier- Recurring Facies Association 43 viii Facies F1 43 Description 43 Interpretation 43 Facies F2 43 Description 44 Interpretation 44 Depositional Systems Overview 44 6 Stratigraphy 45 Key Surfaces 46 Transgressive Surfaces of Erosion 46 Parasequences and Flooding Surfaces 46 Regressive Surfaces of Marine Erosion 47 Sequence Boundaries 48 Discussion of Stratigraphy 49 7 Conclusions 50 8 References 59 end 65 ix LIST OF FIGURES CHAPTER TITLE/SECTION PG 1 Introduction 1 Figure1: Paleogeography Map of the KWIS 4 Figure 2: Regional Map of Wyoming 5 2 The Frontier Formation in Wyoming Figure 3: Regional Stratigraphy of the Frontier 7 Formation Figure 4: Stratigraphy of the Frontier Formation in the 10 Bighorn basin Figure 5: Typical outcrop exposure of the Frontier 11 Formation 3 Introduction to Ichnology 13 4 Methods 16 5 Facies Analysis 16 Figure 6: Photos of Mowry Facies Association 17 Figure 7: Photos of Peay Facies Association 21 Figure 8: Photo of Clinoforms in Peay Member 22 Figure 9: Photos of Peay Facies Association 23 Figure 10: Photos of Sub-X & Alkali Facies Association 33 Figure 11: Torchlight Facies Association 40 6 Stratigraphy 45 Figure 12: Sequence Stratigraphic Interpretation 58 x LIST OF TABLES CHAPTER TITLE/SECTION PG 5 Facies Analysis Table 1: Mowry Facies Association 54 Table 2: Peay Facies Association 55 Table 3: Sub-X Facies Association 55 Table 4: Alkali Facies Association 56 Table 5: Torchlight Facies Association 56 Table 6: Reoccurring Facies Association 57 1 INTRODUCTION Increasingly, sequence stratigraphic studies recognize accommodation as a significant depositional control in continental margin successions (Bhattacharya & Willis 2001; Fielding et al. 2008; Sadeque et al. 2007). Current stratigraphic models are largely biased toward successions where accommodation is not a limiting factor. Sequences formed under low accommodation regimes are generally thinner and less complete than their high accommodation counterparts (Van Wagoner et al. 1990; Mitchum & Wagoner 1991). The frequency and magnitude of changes in accommodation along continental margins strongly controls preservation potential and stratigraphic architecture of sediments deposited in nearshore environments (Porębski & Steel 2006). Facies relationships associated with limited accommodation directly influence reservoir character. Accommodation as a Depositional Control Sediment deposition in continental margin systems can be categorized as either supply- or accommodation limited (Porębski & Steel 2006). Shoreline trajectory and sediment dispersal patterns are directly impacted by the balance between accommodation and sediment supply (Steel et al. 2008; Porębski & Steel 2006). Shallow-marine sediments, deposited in accommodation limited settings, are commonly truncated by transgressive surfaces of erosion (TSE) and sequence boundaries. Ultimately, the extent of lateral progradation is a function
Recommended publications
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • The Wunstorf Drilling Project
    Progress Reports The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2 by Jochen Erbacher, Jörg Mutterlose, Markus Wilmsen, Thomas Wonik, and the Wunstorf Drilling Scientific Party doi:10.0/iodp.sd..0.007 section. Disciplines involved include micropaleontology Introduction and Goals (calcareous nannofossils, planktonic foraminifera), macro- paleontology (ammonites, inoceramids), stable isotopes and The mid-Cretaceous greenhouse world (Albian–Turonian) cyclostratigraphy mainly based on borehole logging, multi was characterized by high atmospheric carbon dioxide sensor core logging���������������������������������������,�������������������������������������� and x-ray fluorescence (XRF) scanning levels, much higher global temperatures than at present�����,���� and data. The combination of geochemical, paleontological�����,���� and a lack of permanent ice caps at the poles (Bice et al., 2006; logging data will allow high resolution chemo- and biostra- Huber et al., 2002; Wilson et al., 2002). A characteristic tigraphy for the CTB�������������������������������������I������������������������������������ which may in ����������������������the future������������������ serve as an feature of this greenhouse world was the deposition of black international standard. shales during the Cenomanian / Turonian boundary interval (CTBI; Schlanger and Jenkyns, 1976; Arthur et al., 1990). The Wunstorf Core These carbon�����������������������������������������������-����������������������������������������������rich
    [Show full text]
  • Evaluation of the Depositional Environment of the Eagle Ford
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas Zachary Paul Hendershott Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hendershott, Zachary Paul, "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas" (2012). LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EVALUATION OF THE DEPOSITIONAL ENVIRONMENT OF THE EAGLE FORD FORMATION USING WELL LOG, SEISMIC, AND CORE DATA IN THE HAWKVILLE TROUGH, LASALLE AND MCMULLEN COUNTIES, SOUTH TEXAS A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for degree of Master of Science in The Department of Geology and Geophysics by Zachary Paul Hendershott B.S., University of the South – Sewanee, 2009 December 2012 ACKNOWLEDGEMENTS I would like to thank my committee chair and advisor, Dr. Jeffrey Nunn, for his constant guidance and support during my academic career at LSU.
    [Show full text]
  • Stratigraphic Framework of the Cretaceous Mowry Shale, Frontier
    Chapter 15 Stratigraphic Framework of the Cretaceous Mowry Shale, Frontier Formation and Adjacent Units, Southwestern Wyoming Province, Volume Title Page Wyoming, Colorado, and Utah By Mark A. Kirschbaum and Laura N.R. Roberts Chapter 15 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah By USGS Southwestern Wyoming Province Assessment Team U.S. Geological Survey Digital Data Series DDS–69–D U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Denver, Colorado: Version 1, 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication May 10, 2005 ISBN= 0-607-99027-9 Contents Abstract ………………………………………………………………………………………
    [Show full text]
  • Late Cretaceous and Tertiary Burial History, Central Texas 143
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org L C T B H, C T Peter R. Rose 718 Yaupon Valley Rd., Austin, Texas 78746, U.S.A. ABSTRACT In Central Texas, the Balcones Fault Zone separates the Gulf Coastal Plain from the elevated Central Texas Platform, comprising the Hill Country, Llano Uplift, and Edwards Plateau provinces to the west and north. The youngest geologic for- mations common to both regions are of Albian and Cenomanian age, the thick, widespread Edwards Limestone, and the thin overlying Georgetown, Del Rio, Buda, and Eagle Ford–Boquillas formations. Younger Cretaceous and Tertiary formations that overlie the Edwards and associated formations on and beneath the Gulf Coastal Plain have no known counterparts to the west and north of the Balcones Fault Zone, owing mostly to subaerial erosion following Oligocene and Miocene uplift during Balcones faulting, and secondarily to updip stratigraphic thinning and pinchouts during the Late Cretaceous and Tertiary. This study attempts to reconstruct the burial history of the Central Texas Platform (once entirely covered by carbonates of the thick Edwards Group and thin Buda Limestone), based mostly on indirect geological evidence: (1) Regional geologic maps showing structure, isopachs and lithofacies; (2) Regional stratigraphic analysis of the Edwards Limestone and associated formations demonstrating that the Central Texas Platform was a topographic high surrounded by gentle clinoform slopes into peripheral depositional areas; (3) Analysis and projection
    [Show full text]
  • The Cretaceous-Tertiary Boundary Interval in Badlands National Park, South Dakota
    The Cretaceous-Tertiary Boundary Interval in Badlands National Park, South Dakota Philip W. Stoffer1 Paula Messina John A. Chamberlain, Jr. Dennis O. Terry, Jr. U.S. Geological Survey Open-File Report 01-56 2001 U.S. DEPARTMENT OF THE INTERIOR Gale A. Norton, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The Cretaceous/Tertiary (K-T) boundary study interval at the Rainbow Colors Overlook along Badlands Loop Road, North Unit of Badlands National Park. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey (USGS) editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1345 Middlefield Road, Menlo Park, CA 94025 http://geopubs.wr.usgs.gov/open-file/of01-056/ ABSTRACT A marine K-T boundary interval has been identified throughout the Badlands National Park region of South Dakota. Data from marine sediments suggest that deposits from two asteroid impacts (one close, one far away) may be preserved in the Badlands. These impact- generated deposits may represent late Maestrichtian events or possibly the terminal K-T event. Interpretation is supported by paleontological correlation, sequence stratigraphy, magnetostratigraphy, and strontium isotope geochronology. This research is founded on nearly a decade of NPS approved field work in Badlands National Park and a foundation of previously published data and interpretations. The K-T boundary occurs within
    [Show full text]
  • The Shore of an Ancient Sea Montana Department of Transportation
    The Shore of an Ancient Sea Montana Department of Transportation bout 80 million years ago this area was near the shore Geo-Facts: of the Western Interior Seaway that stretched from • Once this area looked much like the modern coast of south Texas the present-day Gulf of Mexico to the Arctic Ocean. – except that dinosaurs roamed the countryside instead of cattle. Rivers draining highlands to the west carried sediment into the A • The Yellowstone River began cutting into the rims about one seaway and near-shore currents concentrated the sand creating million years ago as the river migrated back and forth across the barrier islands. As the sea level alternately rose and fell, the valley. The process continues today with the river cutting into the barrier islands migrated, forming an extensive layer of fine- South Hills. grained sand across much of central Montana. The sand was eventually buried, compacted, and cemented into the rocks that • Black Otter Trail was constructed in 1936 by 150 men employed by the Works Progress Administration. The 2.5-mile scenic road now compose the rims and that geologists have named Eagle was promoted by the Billings Commercial Club and included Sandstone. When observed from the south, the rimrocks reveal interpretive signs and observation points. cross beds called accretion surfaces. These surfaces record the deposition of sand washed over the barrier and deposited on the Geo-Activity: other side by waves, causing the sand bar to grow shoreward. • Imagine this area was once the edge of a shallow sea where The seaway was shallow, warm, and probably no more than sharks and swimming carnivorous reptiles patrolled the waters.
    [Show full text]
  • Phylogeny, Diversity, and Ecology of the Ammonoid Superfamily Acanthoceratoidea Through the Cenomanian and Turonian
    PHYLOGENY, DIVERSITY, AND ECOLOGY OF THE AMMONOID SUPERFAMILY ACANTHOCERATOIDEA THROUGH THE CENOMANIAN AND TURONIAN DAVID A.A. MERTZ A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Margaret Yacobucci, Advisor Andrew Gregory Keith Mann © 2017 David Mertz All Rights Reserved iii ABSTRACT Margaret Yacobucci Both increased extinction and decreased origination, caused by rising oceanic anoxia and decreased provincialism, respectively, have been proposed as the cause of the Cenomanian Turonian (C/T) extinction event for ammonoids. Conflicting evidence exists for whether diversity actually dropped across the C/T. This study used the ammonoid superfamily Acanthoceratoidea as a proxy for ammonoids as a whole, particularly focusing on genera found in the Western Interior Seaway (WIS) of North America, including Texas. Ultimately, this study set out to determine 1) whether standing diversity decreased across the C/T boundary in the WIS, 2) whether decreased speciation or increased extinction in ammonoids led to a drop in diversity in the C/T extinction event, 3) how ecology of acanthoceratoid genera changed in relation to the C/T extinction event, and 4) whether these ecological changes indicate rising anoxia as the cause of the extinction. In answering these questions, three phylogenetic analyses were run that recovered the families Acanthoceratidae, Collignoniceratidae, and Vascoceratidae. Pseudotissotiidae was not recovered at all, while Coilopoceratidae was recovered but reclassified as a subfamily of Vascoceratidae. Seven genera were reclassified into new families and one genus into a new subfamily. After calibrating the trees with stratigraphy, I was able to determine that standing diversity dropped modestly across the C/T boundary and the Early/Middle Turonian boundary.
    [Show full text]
  • STRATIGRAPHIC SETTING of FOSSIL LOG SITES in the MORRISON FORMATION (UPPER JURASSIC) NEAR DINOSAUR NATIONAL MONUMENT, UINTAH COUNTY, UTAH, USA Douglas A
    GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association ISSN 2380-7601 Volume 6 2019 STRATIGRAPHIC SETTING OF FOSSIL LOG SITES IN THE MORRISON FORMATION (UPPER JURASSIC) NEAR DINOSAUR NATIONAL MONUMENT, UINTAH COUNTY, UTAH, USA Douglas A. Sprinkel, Mary Beth Bennis, Dale E. Gray, and Carole T. Gee Theme Issue An Ecosystem We Thought We Knew— The Emerging Complexities of the Morrison Formation SOCIETY OF VERTEBRATE PALEONTOLOGY Annual Meeting, October 26 – 29, 2016 Grand America Hotel Salt Lake City, Utah, USA © 2019 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected]. GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association ISSN 2380-7601 Volume 6 2019 Editors UGA Board Douglas A. Sprinkel Thomas C. Chidsey, Jr. October 2018 – September 2019 Utah Geological Survey Utah Geological Survey President Peter Nielsen [email protected] 801.537.3359 801.391.1977 801.537.3364 President-Elect Leslie Heppler [email protected] 801.538.5257 [email protected] [email protected] Program Chair Gregory Schlenker [email protected] 801.745.0262 Treasurer Dave Garbrecht [email protected] 801.916.1911 Bart J. Kowallis Steven Schamel Secretary George Condrat [email protected] 435.649.4005 Past President Paul Inkenbrandt [email protected] 801.537.3361 Brigham Young University GeoX Consulting, Inc.
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • Lateral Heterogeneity and Architectural Analysis of the Wall Creek Member of the Upper Cretaceous (Turonian) Frontier Formation
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2017 LATERAL HETEROGENEITY AND ARCHITECTURAL ANALYSIS OF THE WALL CREEK MEMBER OF THE UPPER CRETACEOUS (TURONIAN) FRONTIER FORMATION John Zupanic University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Let us know how access to this document benefits ou.y Recommended Citation Zupanic, John, "LATERAL HETEROGENEITY AND ARCHITECTURAL ANALYSIS OF THE WALL CREEK MEMBER OF THE UPPER CRETACEOUS (TURONIAN) FRONTIER FORMATION" (2017). Graduate Student Theses, Dissertations, & Professional Papers. 11033. https://scholarworks.umt.edu/etd/11033 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. LATERAL HETEROGENEITY AND ARCHITECTURAL ANALYSIS OF THE WALL CREEK MEMBER OF THE UPPER CRETACEOUS (TURONIAN) FRONTIER FORMATION By JOHN PRESTON ZUPANIC Bachelor of Science, University of Wyoming, Laramie, WY, 2013 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Geology The University of Montana Missoula, MT June 2017 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Marc S. Hendrix, Ph.D. Committee Chair Department of Geosciences Michael H. Hofmann, Ph.D. Department of Geosciences Michael D. DeGrandpre, Ph.D. Department of Chemistry and Biochemistry i © COPYRIGHT by John Preston Zupanic 2016 All Rights Reserved ii Zupanic, John, M.S., Fall 2016 Geology Lateral Heterogeneity and Architectural Analysis of the Upper Cretaceous (Turonian)Wall Creek Member of the Frontier Formation Chairperson: Marc S.
    [Show full text]