The Large-Scale Production of Graphene Flakes Using Magnetically

Total Page:16

File Type:pdf, Size:1020Kb

The Large-Scale Production of Graphene Flakes Using Magnetically 4570 CARBON 48 (2010) 4556– 4577 The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes I. Levchenko a,b, O. Volotskova c, A. Shashurin c,d, Y. Raitses e, K. Ostrikov a,b,, M. Keidar c a CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070, Australia b School of Physics, The University of Sydney, Sydney NSW 2006, Australia c Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA d Applied Plasma Science LLC, Marlowe Place, Oak Park, MI 25930, USA e Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA ARTICLE INFO ABSTRACT Article history: A novel approach to large-scale production of high-quality graphene flakes in magneti- Received 28 May 2010 cally-enhanced arc discharges between carbon electrodes is reported. A non-uniform mag- Accepted 29 July 2010 netic field is used to control the growth and deposition zones, where the Y–Ni catalyst Available online 7 August 2010 experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model. Ó 2010 Elsevier Ltd. All rights reserved. Graphene and graphene flakes (GFs) are very promising for Here we report on a novel method for the large-scale pro- various carbon-based nanodevices (single-electron transis- duction of graphene flakes in an arc discharge, enhanced with tors, supercapacitors, sensors, etc.) [1,2]. GFs also demon- a specially shaped magnetic field and a custom-designed cat- strate unique mechanical properties, thus being the most alyst. Using our approach, it is possible to achieve production prominent candidates for the micro- and nano-electrome- yields of graphene flakes which exceed the rates achievable chanical systems [3]. With graphene’s intrinsic breaking by other techniques. strength reaching 42 N mÀ1, it is the strongest material ever The graphene flakes were produced in a high-current arc discovered in the Universe. The production of graphene flakes discharge setup (see scheme and photo in Fig. 1) with carbon usually requires very specific process conditions, namely a anode and cathode installed in the non-magnetic vacuum large influx of carbon material, relatively high temperatures, chamber. The cathode is a rod of 12 mm dia., and the anode and often a specially prepared catalyst. These conditions is a rod of 6 mm dia. with a hole in the centre of 3 mm dia. can be easily maintained in high-density plasmas [4,5]. Re- The hole was filled with a mixture of graphitic carbon and cently, arc discharge plasmas have been successfully used Y–Ni catalyst powders (in 1:4 ratio), with the average particle for the synthesis of graphene flakes [6,7], but large-scale pro- size of 0.04–4 mm. A discharge-enhancing permanent magnet duction of GFs still remains essentially unresolved. The (50 · 50 · 25 mm) was installed in the chamber to create a majority of the surface-based methods (micro-mechanical non-uniform magnetic field of 1.2 kG in the interelectrode exfoliation, epitaxial growth, decomposition of silicon car- gap of about 1 cm. The simulated topography of the magnetic bide, etc.) have not reached the expected yields [1]. Thus, field is shown in Fig. 1. The process was conducted in a he- the arc discharge still remains the most promising method lium gas at a pressure of 500 Torr, which is very effective for for synthesizing high-quality GFs at industrial scales. Given the carbon nanostructure production [8]; some more details the phenomenal success of arc discharges in the synthesis can be found in our recent publications [9]. of large amounts of high-quality CNTs, further development The production of graphene in the catalyst-free arc dis- of the arc discharge systems for the effective large-scale pro- charge process is also possible, but in this case the use of duction of graphene is a highly-topical issue. hydrogen-containing environment is required to terminate dangling bonds with hydrogen atoms and thus prevent the * Corresponding author at: CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070, Australia. Fax: +61 2 9413 7634. E-mail address: [email protected] (K. Ostrikov). 0008-6223/$ - see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.carbon.2010.07.055 CARBON 48 (2010) 4556– 4577 4571 where a strong incoming flux of carbon material to the cata- lyst is maintained; outside of the growth zone, the gas tem- perature (and hence the catalyst temperature) decrease sharply below the Curie point. Consequently, the catalyst par- ticles become ferromagnetic, respond to the magnetic field, and eventually the catalyst particles with the attached graph- ene flakes deposit on the magnet surface, in specific graphene collection areas. Thus, in our experiments the specially de- signed catalyst accelerated the nucleation and growth of graphene, and led to graphene deposition onto the magnet surface before any significant overgrowth takes place. The carbon samples were analysed with SEM, TEM, AFM, Fig. 1 – Field emission scanning electron micrograph and Micro-Raman techniques. The Micro-Raman system (FESEM) images (a) and (b), X-ray diffraction (XRD) pattern of was based on an air-cooled argon 200 mW ion laser, holo- carbon fibers annealed at 1400 °C for 2 h (c), transmission graphic optics, spectrometer with a CCD detector (matrix size electron micrograph (TEM) image of carbon fibers with 5 of 1100 · 330 pixels), power 5 mW, wavelength 514 nm. A wt.% cobalt (d, e) and SAED of cobalt particles (inset of series of Raman measurements over both scattering ranges figure e). (first and second order, which allows to study second order peaks) were made. TEM (JEOL JEM-1200EX) and AFM (Asylum Research MFP3D, tapping-mode in air) imaging was used to graphene sheets from rolling into nanotubes [7]. Since hydro- investigate the structural properties of the graphene flakes. gen exhibits high chemical activity in plasma (it can effec- The AFM tip (Olympus AC240TS silicon cantilevers, force con- tively reduce oxides and carbides), such process may lead to stant k =2NmÀ1, resonance frequency f = 70 kHz) was used low controllability of graphene doping with some dopants. in the analysis. The high-resolution SEM analysis was per- This is why we used a catalyzed process in a pure noble gas formed using a Hitachi field emission S-4700-II FE-SEM micro- environment which is highly flexible with respect to any scope (accelerating voltages from 1 to 30 kV). The samples for graphene compositions. TEM analysis were prepared by dispersion of the carbon soot The application of an external magnetic field strongly in- into aqueous 2% (mass/volume) sodium deoxycholate solu- creases both plasma density and temperature [8]. The plasma tion by sonicating in ice bath for 1 h at 1 W/mL of the applied density is increased by the two main effects: first, by mag- power. Then, the sonicated suspension was centrifuged in a netic confinement that restricts the plasma, and second, by Beckman J-2 centrifuge for 2 h in a JA-20 rotor at a speed of magnetizing electrons and thus creating conditions for more 1885 rad/s and a temperature of 10 °C. After that, the samples effective ionization of the neutral gas atoms [10]. Plasma tem- were placed on a gilder grid (T2000-Cu, square, Electron perature, in turn, increases the magnetic field due to stronger Microscopy Science) for further microanalysis. electric field in the magnetized plasma, in contrast to the In Fig. 2 we show SEM micrographs of carbon material col- non-magnetic conditions. This in turn results in the increase lected on the magnet surfaces, TEM image and SAED pattern heating of the nanostructures in the plasma, and strongly in- of graphene flakes. The estimated size of the GFs is approxi- creased flux of ionized material to the nanostructures; as a re- mately 500–2500 nm, typically with up to 10 graphene layers. sult, fast nucleation and growth is ensured due to the The atomic force microscopy clearly revealed the presence of application of an external magnetic field. flake-like structures with the size of around one micron and a The temperature of the anode surface reaches 3500 K [11], fairly uniform height in the 1–5 nm range (Fig. 2e–g). This cor- and thus, effective evaporation of the metal catalyst particles responds to 3–15 graphene layers in different areas of the released from anode is ensured. In the discharge core, tem- flakes. The Raman characterization of the specimens showed perature reaches 5000 K and hence, further evaporation of the occurrence of a weak D-peak at around 1325 cmÀ1, which the metal catalyst to the plasma is supported [12]. Then, the is related to the relatively small amount of defects in sp2 discharge temperature between electrodes falls down below bonds (Fig. 2h). G-peak at 1582 cmÀ1 and highly symmetrical 2000 K, and the metal catalyst re-nucleates and grows to 2D-peak at 2650 cmÀ1 demonstrate the presence of a rela- small catalyst particles (4 nm in average). Further, when the tively small number of graphene layers in the flakes. It should temperature falls below 1500 K, nucleation and growth of be noted that carbon nanotubes were also found in samples the graphene flakes on the small newly-nucleated catalyst collected elsewhere in the chamber. particles starts. The absolute maximum of the graphene flake production To optimize the growth and deposition of graphene flakes, yield in the arc discharge with carbon electrodes can be esti- we used the optimized composition of the two transition met- mated using the measured ablation rate of the graphite an- als, Yttrium (paramagnetic, which easily forms carbides en- ode.
Recommended publications
  • Growth of Carbon Nanocone Arrays on a Metal Catalyst: the Effect of Carbon Flux Ionization I
    Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization I. Levchenko, K. Ostrikov, J. Khachan, and S. V. Vladimirov Citation: Physics of Plasmas (1994-present) 15, 103501 (2008); doi: 10.1063/1.2988781 View online: http://dx.doi.org/10.1063/1.2988781 View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/15/10?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Effect of hydrogen plasma irradiation of catalyst films on growth of carbon nanotubes filled with iron nanowires J. Vac. Sci. Technol. A 32, 02B102 (2014); 10.1116/1.4827822 Effect of Catalyst and Buffer Layer on Growth of Carbon Nanowalls by HFCVD AIP Conf. Proc. 1315, 1317 (2011); 10.1063/1.3552366 Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth J. Appl. Phys. 104, 073308 (2008); 10.1063/1.2996272 Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays Appl. Phys. Lett. 92, 063108 (2008); 10.1063/1.2841845 Publisher’s Note: “Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth” [J. Appl. Phys.98, 034308 (2005)] J. Appl. Phys. 99, 039902 (2006); 10.1063/1.2171441 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 131.181.251.131 On: Tue, 15 Jul 2014 04:34:25 PHYSICS OF PLASMAS 15, 103501 ͑2008͒ Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization ͒ I.
    [Show full text]
  • A Novel Super-Elastic Carbon Nanofiber with Cup-Stacked Carbon Nanocones and a Screw Dislocation
    A novel super-elastic carbon nanofiber with cup-stacked carbon nanocones and a screw dislocation Xu Han1, Futian Xu1, Shuyong Duan1,*, Haifei Zhan2, **, Yuantong Gu2, and Guirong Liu 3,4 1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300401 China 2School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia 3Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Ohio, USA 4Summer Part-Time Professor, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401 China Abstract. Carbon nanofibers (NFs) have been envisioned with broad promising applications, such as nanoscale actuators and energy storage medium. This work reports for the first-time super- elastic tensile characteristics of NFs constructed from a screw dislocation of carbon nanocones (NF-S). The NF-S exhibits three distinct elastic deformation stages under tensile, including an initial homogeneous deformation, delamination, and further stretch of covalent bonds. The delamination process endows the NF-S extraordinary tensile deformation capability, which is not accessible from its counterpart with a normal cup-stacked geometry. The failure of NF-S is governed by the inner edges of the nanocone due to the strain concentration, leading to a common failure force for NF-S with varying geometrical parameters. Strikingly, the delamination process is dominated by the inner radius and the apex angle of the nanocone. For a fixed apex angle, the yielding strain increases remarkably when the inner radius increases, which can exceed 1000%. It is also found that the screw dislocation allows the nanocones flattening and sliding during compression.
    [Show full text]
  • Electron Beam Characterization of Carbon Nanostructures
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Fall 2007 Electron beam characterization of carbon nanostructures Eric Samuel Mandell Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Physics Commons Department: Physics Recommended Citation Mandell, Eric Samuel, "Electron beam characterization of carbon nanostructures" (2007). Doctoral Dissertations. 2163. https://scholarsmine.mst.edu/doctoral_dissertations/2163 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. ELECTRON BEAM CHARACTERIZATION OF CARBON NANOSTRUCTURES by ERIC MANDELL A DISSERTATION Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI – ROLLA AND UNIVERSITY OF MISSOURI – ST. LOUIS In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in PHYSICS 2007 __________________________ __________________________ Phil Fraundorf, Chair Dan Waddill, Co-Chair __________________________ __________________________ Erika Gibb Massimo Bertino __________________________ Scott Miller 2007 Eric Mandell All Rights Reserved iii ABSTRACT Atom-thick carbon nanostructures represent a class of novel materials that are of interest to those studying carbon’s role in fossil fuel, hydrogen storage, scaled-down
    [Show full text]
  • Highly Efficient Water Desalination in Carbon Nanocones
    Carbon 129 (2018) 374e379 Contents lists available at ScienceDirect Carbon journal homepage: www.elsevier.com/locate/carbon Highly efficient water desalination in carbon nanocones * Wen Li a, b, 1, Wensen Wang a, 1, Yingnan Zhang a, Youguo Yan a, Petr Kral b, c, d, , ** Jun Zhang a, a College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China b Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States c Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, United States d Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States article info abstract Article history: Inspired by the highly efficient water transport presented in hourglass-shaped aquaporin channels, Received 14 September 2017 molecular dynamics simulations were conducted to study water desalination in carbon nanocones Received in revised form (CNCs). Their desalination performance (salt rejection, water flow) depends on the cone size, angle, and 21 November 2017 flow direction (nonequilibrium). Free energy calculations reveal that ultrasmall CNCs with apex angles of Accepted 9 December 2017 19.2 provide the best desalination performance, since they contain relatively ordered water structures, Available online 12 December 2017 providing high water flows, but have a high ion rejection rate. The desalination performance observed in these CNCs is better than in nanoporous graphene and MoS2 monolayers. © 2017 Elsevier Ltd. All rights reserved. 1. Introduction Nature provides great inspiration by its design principles and solutions. For example, biological channels in cell membranes are Freshwater shortage is becoming a worldwide problem due to a highly selective, permeable, and environmentally sensitive global climate change, growing population, and increasing indus- [27e30], which is difficult to achieve simultaneously in synthetic trial and agricultural consumptions [1,2].
    [Show full text]
  • Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip
    Lin et al. Nanoscale Research Letters (2015) 10:401 DOI 10.1186/s11671-015-1096-8 NANO EXPRESS Open Access Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy Chun-Ting Lin1,Yu-WeiChen2,JamesSu1,Chien-TingWu3,Chien-NanHsiao1,Ming-HuaShiao1* and Mao-Nan Chang2,4* Abstract In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy. Background decades, electron beam induced deposition (EBID) has With the prosperous development of nanotechnology, been a major approach for tip modification [16–19]. the demand on nondestructive analysis of the distri- However, the vacuum system required for the EBID bution of charge density [1], magnetic field [2], sur- process and the need to manipulate electron beams face potential [3], etc.
    [Show full text]
  • Development of New Probes Based on Carbon Nanocones for Near-Field Microscopies Germercy Paredes Guerrero
    Development of new probes based on carbon nanocones for near-field microscopies Germercy Paredes Guerrero To cite this version: Germercy Paredes Guerrero. Development of new probes based on carbon nanocones for near-field mi- croscopies. Materials. Université Paul Sabatier - Toulouse III, 2020. English. NNT : 2020TOU30206. tel-03193984 HAL Id: tel-03193984 https://tel.archives-ouvertes.fr/tel-03193984 Submitted on 9 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A la hermosa memoria de mis padres, Gregorio & Germania Estaré por siempre agradecida y orgullosa de su inspiración, confianza, apoyo, enseñanzas y legado. REMERCIEMENTS « La reconnaissance est la mémoire du cœur » Hans Crhistian Andersen Quisiera agradecer a la Pontificia Universidad Católica Madre y Maestra (PUCMM), particularmente, al “Programa de Formación Disciplinar” por financiar mi proyecto de investigación en el CEMES-CNRS; a la Vicerrectoría de Investigación e innovación, a la Facultad de Ciencias e Ingeniería y a la escuela de Ingeniería Industrial, por su receptividad y cooperación. Je voudrais aussi remercier le Centre d’Élaboration de Matériaux et d’Études Structurales (CEMES) et le Programme des Investissements d’Avenir (EUR grant NanoX n° ANR-17-EURE-0009) pour le financement partiel à ce projet en me donnant accès aux installations pour accomplir ce travail de recherche dans un cadre d’excellence internationale.
    [Show full text]
  • Plasma-Controlled Metal Catalyst Saturation and the Initial Stage of Carbon Nanostructure Array Growth Igor Levchenko University of Sydney
    Rochester Institute of Technology RIT Scholar Works Articles 10-14-2008 Plasma-Controlled Metal Catalyst Saturation and the Initial Stage of Carbon Nanostructure Array Growth Igor Levchenko University of Sydney Ken Ostrikov CSIRO Materials Science and Engineering Davide Mariotti Rochester Institute of Technology Anthony Bruce Murphy CSIRO Materials Science and Engineering Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation I. Levchenko, K. Ostrikov, D. Mariotti, and A.B. Murphy, Journal of Applied Physics 104, 073308 (2008). https://doi.org/10.1063/ 1.2996272 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. JOURNAL OF APPLIED PHYSICS 104, 073308 ͑2008͒ Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth ͒ I. Levchenko,1,a K. Ostrikov,2,1 D. Mariotti,3 and A. B. Murphy2 1Plasma Nanoscience, School of Physics, The University of Sydney, Sydney NSW 2006, Australia 2CSIRO Materials Science and Engineering, P. O. Box 218, Lindfield NSW 2070, Australia 3Department of Microelectronic Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA ͑Received 11 July 2008; accepted 18 August 2008; published online 14 October 2008͒ The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns.
    [Show full text]
  • NSF-EC Workshop on Nanomaterials and Nanotechnology Summary Report
    NSF-EC Nanomaterials Workshop 2002 NSF-EC Workshop on Nanomaterials and Nanotechnology Summary Report I. Workshop Overview The NSF-EC workshop on nanomaterials and nanotechnology was held in Boston, Massachusetts on December 5-7 2002. Both the US and the EC realize the importance of a globally trained technical workforce. A focused effort to enhance interactions between the U.S. and E.C. in scientific research is one important way to create a culture where international cooperation is the rule rather than the exception. This workshop was developed to provide important feedback to NSF and EC on two issues: I) The most critical and timely issues facing those investigators developing new nanomaterials and technologies related to those materials and II) The best practices for catalyzing cooperative research in the emerging area of nanomaterials. Appendix A provides a list of attendees while Appendix B gives the program and talk titles. Recommendations for important topics and challenges in nanomaterials research were arrived at by discussions in breakout groups in each of the three topical theme areas of the work. These discussions were preceded by brief talks from each of the participants. The common themes found in this discussion: • An increased focus on developing materials which have multifunctional capabilities. Nanoparticles that can both sense and treat disease for example, devices that leverage both the optical and electronic properties of nanoparticles assemblies, or functional coatings whose biodegradation can be triggered after a certain time. • Recognition of the importance that the environmental impact of nanomaterials in developing sustainable nanotechnologies. Very little is known about how nanomaterials interact with animals and the larger environment.
    [Show full text]
  • Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: a Review
    micromachines Review Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review Harald Plank 1,2,3,* , Robert Winkler 1 , Christian H. Schwalb 4, Johanna Hütner 4, Jason D. Fowlkes 5,6 , Philip D. Rack 5,6 , Ivo Utke 7 and Michael Huth 8 1 Christian Doppler Laboratory for Direct–Write Fabrication of 3D Nano–Probes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria; [email protected] 2 Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, Austria 3 Graz Centre for Electron Microscopy, 8010 Graz, Austria 4 GETec Microscopy GmbH, 1220 Vienna, Austria; [email protected] (C.H.S.); [email protected] (J.H.) 5 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; [email protected] (J.D.F.); [email protected] (P.D.R.) 6 Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, TN 37996, USA 7 Mechanics of Materials and Nanostructures Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland; [email protected] 8 Physics Institute, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany; [email protected] * Correspondence: [email protected] Received: 29 November 2019; Accepted: 20 December 2019; Published: 30 December 2019 Abstract: Scanning probe microscopy (SPM) has become an essential surface characterization technique in research and development. By concept, SPM performance crucially depends on the quality of the nano-probe element, in particular, the apex radius. Now, with the development of advanced SPM modes beyond morphology mapping, new challenges have emerged regarding the design, morphology, function, and reliability of nano-probes.
    [Show full text]
  • Vibrational Heat Transport in Molecular Junctions
    Vibrational Heat Transport in Molecular Junctions Dvira Segal and Bijay Kumar Agarwalla Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street Toronto, Ontario, Canada M5S 3H6 We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quan- tum coherent effects, are factors that interplay to determine the predominant mechanism (ballis- tic/diffusive), effectiveness (poor/good) and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques which incorporate molecular anharmonici- ties. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules. arXiv:1506.08936v1 [cond-mat.mes-hall] 30 Jun 2015 2 CONTENTS I. INTRODUCTION 2 II. EXPERIMENTS: FOCUS ON HEAT CONDUCTION IN ALKANE CHAINS 4 III. METHODOLOGIES: Harmonic Approximation and the Landauer Formula 6 A. Formalism 6 B. Applications 8 IV. METHODOLOGIES: Anharmonic Interactions 9 A. Self-Consistent Reservoirs 10 B. Non-equilibrium Green's Function Approach 10 1. Formalism 10 2. Application 11 C. Quantum Master Equation 12 1. Weak molecule-reservoir coupling: The Bloch-Redfield-Markov equation 13 2.
    [Show full text]
  • Sharpening of Carbon Nanocone Tips During Plasma-Enhanced Chemical Vapor Growth
    28 December 2001 Chemical Physics Letters 350 (2001) 381–385 www.elsevier.com/locate/cplett Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth Vladimir I. Merkulov *, Anatoli V. Melechko, Michael A. Guillorn, Douglas H. Lowndes, Michael L. Simpson Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, P.O. Box 2008, MS 6006, Oak Ridge, TN 37831, USA University of Tennessee, Knoxville, TN 37996, USA Received 11 October 2001 Abstract In situ tip sharpening of vertically aligned carbon nanocones (VACNCs) was demonstrated. VACNCs were syn- thesized on patterned catalyst dots of 100 nm in diameter using dc plasma-enhanced chemical vapor deposition. The VACNC tip diameter was found to decrease with growth time. This enables synthesis of ultra-sharp VACNCs even for relatively large catalyst dot sizes, which is quite important for practical applications. We also find that for a given set of growth parameters the diameter of the initially formed catalyst nanoparticle determines the maximum length of the growing VACNC. The mechanism of VACNC growth and sharpening is discussed. Ó 2001 Published by Elsevier Science B.V. Vertically aligned carbon nanofibers (VACNFs) to the substrate can be established. VACNCs with conical shape [1], which we refer to as verti- performance (low field-emission turn-on field, high cally aligned carbon nanocones (VACNCs), are resolution imaging, etc.) in the above applications important for various applications including elec- improves as the tip diameter decreases. The tip tron field emitters and probes for scanning mi- diameter is determined by the size of a catalyst croscopy, among others.
    [Show full text]
  • Synthesis and (Some) Applications of Carbon-Nanotube-Supported Pyrolytic Carbon Nanocones
    Indian Journal of Engineering & Materials Sciences Vol. 27, December 2020, pp. 1091-1094 Synthesis and (some) applications of carbon-nanotube-supported pyrolytic carbon nanocones Germercy Paredesa,b*, Grégory Seinea, Robin Coursa, Florent Houdelliera, Hatem Allouchea, Thierry Ondarçuhuc, Fabrice Piazzab, Marc Monthiouxa* aCenter of Elaboration of Materials and Structural Studies (CEMES), UPR-8011 CNRS, Toulouse University, Toulouse 31055, France bNanoscience Research Laboratory, Pontifical Catholic University Madre y Maestra (PUCMM), Apartado Postal 822, Santiago De Los Caballeros 51000, Dominican Republic cInstitute of Fluid Mechanics of Toulouse (IMFT), UMR 5502 CNRS, Toulouse 31055, France Received: 25 August 2020 Graphene-based cones with nanosized apex can be obtained by means of a high temperature pyrolytic carbon deposition process using methane and hydrogen as gaseous feedstock and single carbon nanotubes as deposition substrates. Aside the cones, micrometer-sized carbon beads or fibre segments are deposited meanwhile which are a key morphological component for allowing handling and mounting the carbon cones and then using them for various applications. Based on both the literature dealing with pyrolytic carbon deposition processes and experimental observations, a peculiar deposition mechanism is proposed, involving the transient formation of pitch-like liquid phase droplets which deposit onto the individual carbon nanotubes. In this picture, it is believed that a key parameter is the diameter ratio for the droplets and the nanotubes, respectively. The cone concentric texture and perfect nanotexture are shown by high resolution transmission electron microscopy, which allows interesting mechanical and conducting properties to be predicted. Correspondingly, applications of the carbon nanocones as electron emitters for cold-field electron sources on the one hand, and as probes for various modes of near-field microscopy on the other hand, have been tested.
    [Show full text]