bioRxiv preprint doi: https://doi.org/10.1101/2020.04.09.030403; this version posted August 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Sperm-specific COX6B2 enhances oxidative phosphorylation, 2 proliferation, and survival in lung adenocarcinoma 3 4 Chun-Chun Cheng1, Joshua Wooten2, Zane Gibbs1, Kathleen McGlynn1, Prashant 5 Mishra3, Angelique W. Whitehurst1* 6 7 1Department of Pharmacology, Simmons Comprehensive Cancer Center, UT 8 Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, Texas 75390-8807, USA. 9 2Nuventra, 3217 Appling Way, Durham, NC 27703, USA 10 3Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, 11 USA. 12 13 *Correspondence:
[email protected], 214-645-6066 (p), 14 214-645-6347 (f) 15 16 17 ABSTRACT 18 Cancer testis antigens (CTAs) are genes whose expression is normally restricted to the 19 testis but anomalously activated in cancer. In sperm, a number of CTAs promote energy 20 generation, however whether these proteins contribute to tumor cell metabolism is not 21 understood. Here we describe COX6B2, a sperm-specific component of cytochrome c 22 oxidase (complex IV). COX6B2 is frequently expressed in human lung adenocarcinoma 23 (LUAD) and expression correlates with reduced survival time in patients. COX6B2, but 24 not its somatic isoform COX6B1, enhances activity of complex IV, increasing 25 mitochondrial oxidative phosphorylation (OXPHOS) and NAD+ generation. 26 Consequently, COX6B2-expressing cells display a proliferative advantage, particularly 27 in low oxygen conditions. Conversely, depletion of COX6B2 attenuates OXPHOS and 28 collapses mitochondrial membrane potential leading to cell death or senescence.