A Cretaceous Bug with Exaggerated Antennae Might Be a Double-Edged Sword in Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Pentatomidae) DISSERTATION Presented
Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts. -
Atratividade De Frutos De Espécies De Maracujazeiro a Holhymenia Histrio Fabr
Bol. San. Veg. Plagas, 27: 35-39, 2001 Atratividade de Frutos de Espécies de Maracujazeiro a Holhymenia histrio Fabr. (Hemiptera: Coreidae) e Preferência Alimentar E. L. L. BALDIN, A. C. CAETANO, F. M. LARA, A. L. BOIÇA JR Atractividad de fruts de Especies de Granadilla a Holhymenia histrio Fabr. (Hemiptera: Coreidae) y Preferencia Alimentaria En este trabajo se ha evaluado la atracción y la preferencia alimentar de Holhymenia histrio (Fabr., 1803) (Hemiptera: Coreidae) a diferentes especies de gra- nadilla. Se realizaron tests de atractividad y consumo con opción, evaluándose el nú- mero de insectos atraídos a 1, 3, 5, 15, 30, 45, 60, 90, 120 y 180 minutos después de la liberación, número total de picadas, tiempo total de alimentación y tiempo promedio por picada. En los tests con opción, frutos de P. giberti y P. coccínea fueron menos pre- feridos, sugiriendo que ellos son resistentes. P. edulis í.flavicarpa, P. setacea y P. cin- cinata, fueron más atractivos y consumidos por H. histrio, indicando que ellos son sus- ceptibles. Palabras clave: Insecta, Passiflora spp., resistencia a insectos INTRODUÇÃO quase todo o território nacional, com desta- que para os estados de São Paulo, Pará, O maracujazeiro Passiflora spp. possui Bahia, Sergipe, Minas Gerais, Pernambuco grande importância mundial devido às qua- e Alagoas (RUGGIERO et ai. 1996, SOUSA & lidades nutricionais de seus frutos e pelas MELETTI 1997). propriedades farmacêuticas de seu suco, Os danos causados pelos percevejos casca e sementes. Sua ação sedativa e tran- estão entre os principais problemas fitos- quilizante, devido à presença de flavonói- sanitários do maracujazeiro, principalmen- des nos frutos, tem sido confirmada em di- te nos períodos próximos à colheita. -
1 It's All Geek to Me: Translating Names Of
IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning. -
Faune De France Hémiptères Coreoidea Euro-Méditerranéens
1 FÉDÉRATION FRANÇAISE DES SOCIÉTÉS DE SCIENCES NATURELLES 57, rue Cuvier, 75232 Paris Cedex 05 FAUNE DE FRANCE FRANCE ET RÉGIONS LIMITROPHES 81 HÉMIPTÈRES COREOIDEA EUROMÉDITERRANÉENS Addenda et Corrigenda à apporter à l’ouvrage par Pierre MOULET Illustré de 3 planches de figures et d'une photographie couleur 2013 2 Addenda et Corrigenda à apporter à l’ouvrage « Hémiptères Coreoidea euro-méditerranéens » (Faune de France, vol. 81, 1995) Pierre MOULET Museum Requien, 67 rue Joseph Vernet, F – 84000 Avignon [email protected] Leptoglossus occidentalis Heidemann, 1910 (France) Photo J.-C. STREITO 3 Depuis la parution du volume Coreoidea de la série « Faune de France », de nombreuses publications, essentiellement faunistiques, ont paru qui permettent de préciser les données bio-écologiques ou la distribution de nombreuses espèces. Parmi ces publications il convient de signaler la « Checklist » de FARACI & RIZZOTTI-VLACH (1995) pour l’Italie, celle de V. PUTSHKOV & P. PUTSHKOV (1997) pour l’Ukraine, la seconde édition du « Verzeichnis der Wanzen Mitteleuropas » par GÜNTHER & SCHUSTER (2000) et l’impressionnante contribution de DOLLING (2006) dans le « Catalogue of the Heteroptera of the Palaearctic Region ». En outre, certains travaux qui m’avaient échappé ou m’étaient inconnus lors de la préparation de cet ouvrage ont été depuis ré-analysés ou étudiés. Enfin, les remarques qui m’ont été faites directement ou via des notes scientifiques sont ici discutées ; MATOCQ (1996) a fait paraître une longue série de corrections à laquelle on se reportera avec profit. - - - Glandes thoraciques : p. 10 ─ Ligne 10, après « considérés ici » ajouter la note infrapaginale suivante : Toutefois, DAVIDOVA-VILIMOVA, NEJEDLA & SCHAEFER (2000) ont observé une aire d’évaporation chez Corizus hyoscyami, Liorhyssus hyalinus, Brachycarenus tigrinus, Rhopalus maculatus et Rh. -
Plant Mobility in the Mesozoic Disseminule Dispersal Strategies Of
Palaeogeography, Palaeoclimatology, Palaeoecology 515 (2019) 47–69 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants T ⁎ Stephen McLoughlina, , Christian Potta,b a Palaeobiology Department, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden b LWL - Museum für Naturkunde, Westfälisches Landesmuseum mit Planetarium, Sentruper Straße 285, D-48161 Münster, Germany ARTICLE INFO ABSTRACT Keywords: Four upper Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia (the Daohugou, Seed dispersal Talbragar, Jehol, and Koonwarra biotas) offer glimpses into the representation of plant disseminule strategies Zoochory during that phase of Earth history in which flowering plants, birds, mammals, and modern insect faunas began to Anemochory diversify. No seed or foliage species is shared between the Northern and Southern Hemisphere fossil sites and Hydrochory only a few species are shared between the Jurassic and Cretaceous assemblages in the respective regions. Free- Angiosperms sporing plants, including a broad range of bryophytes, are major components of the studied assemblages and Conifers attest to similar moist growth habitats adjacent to all four preservational sites. Both simple unadorned seeds and winged seeds constitute significant proportions of the disseminule diversity in each assemblage. Anemochory, evidenced by the development of seed wings or a pappus, remained a key seed dispersal strategy through the studied interval. Despite the rise of feathered birds and fur-covered mammals, evidence for epizoochory is minimal in the studied assemblages. Those Early Cretaceous seeds or detached reproductive structures bearing spines were probably adapted for anchoring to aquatic debris or to soft lacustrine substrates. -
Hemiptera: Heteroptera) of Magallanes Region: Checklist and Identification Key to the Species
Anales Instituto Patagonia (Chile), 2016. Vol. 44(1):39-42 39 The Coreoidea Leach, 1815 (Hemiptera: Heteroptera) of Magallanes Region: Checklist and identification key to the species Los Coreoidea Leach, 1815 (Hemiptera: Heteroptera) de la Región de Magallanes: Lista de especies y clave de identificación Eduardo I. Faúndez1,2 Abstract Slater, 1995), and several species are economically Members of the Coreoidea of Magallanes Region important; there are, however, also cases in which are listed. First records in the Magallanes Region are species of this superfamily have been recorded provided for Harmostes (Neoharmostes) procerus feeding on carrion and dung (Mitchell, 2000). Berg, 1878 and Althos nigropunctatus (Signoret, Additionally, biting humans has been recorded 1864). It is concluded that three species classified in members of this group (Faúndez & Carvajal, in three genera and two families are present in the 2011). In Chile, the Coreoidea is represented by region. A key to the species is provided. two families, the Coreidae and Rhopalidae, and the major diversity for this group is found in the central Key words: Coreidae, Rhopalidae, Distribution, zone of the country (Faúndez, 2015b). New records, Chile. In Magallanes, very little is known about the species of this superfamily, and actually there is Resumen only one species officially recorded from the area: Se listan los Coreoidea de la Region de Magallanes. the dunes bug, Eldarca nigroscutellata Faúndez, Se entregan los primeros registros para la región 2015 (Coreidae). The purpose of this contribution de Harmostes (Neoharmostes) procerus Berg, is to provide an update of this group in the 1878 y Althos nigropunctatus (Signoret, 1864). -
The Metathoracic Scent Gland of the Leaf-Footed Bug, Leptoglossus Zonatus
Journal of Insect Science: Vol. 13 | Article 149 Gonzaga-Segura et al. The metathoracic scent gland of the leaf-footed bug, Leptoglossus zonatus J. Gonzaga-Segura1a, J. Valdez-Carrasco2b, V. R. Castrejón-Gómez1c* 1Becario COFAA. Laboratorio de Ecología Química de Insectos. Departamento de Interacciones Planta-Insecto. Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional. Carretera Yautepec, Jojutla, Km. 6 Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos, Mexico, C.P. 62731 2Laboratorio de Morfología de Insectos. Colegio de Posgraduados en Ciencias Agrícolas Campus Montecillo. Car- retera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, C.P. 56230 Abstract The metathoracic scent gland of 25-day-old adults of both sexes of the leaf-footed bug, Leptoglossus zonatus (Dallas) (Heteroptera: Coreidae), are described based on optical microscopy analysis. No sexual dimorphism was observed in the glandular composition of this species. The gland is located in the anteroventral corner of the metathoracic pleura between the middle and posterior coxal pits. The opening to the outside of the gland is very wide and permanently open as it lacks a protective membrane. In the internal part, there is a pair of metathoracic glands that consist of piles of intertwined and occasionally bifurcated cellular tubes or columns. These glands discharge their pheromonal contents into the reservoir through a narrow cuticular tube. The reservoir connects with the vestibule via two opposite and assembled cuticular folds that can separate muscularly in order to allow the flow of liquid away from the insect. The external part consists of an ostiole from which the pheromone is emitted. -
Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring
Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring Seiichi Sudo a*, Masahiro Shiono a, Toshiya Kainuma a, Atsushi Shirai b, and Toshiyuki Hayase b a Faculty of Systems Science and Technology, Akita Prefectural University, Japan b Institute of Fluid Science, Tohoku University, Japan Abstract— This paper is concerned with a small In this paper, the springtail leaping organ was jumping mechanism. Microscopic observations of observed with confocal laser scanning microscopy. A springtail leaping organs were conducted using a jumping mechanism using a spring and small confocal leaser scanning microscope. A simple electromagnet was produced based on the observations springtail mechanism using a spring and small of leaping organ and the jumping analysis of the electromagnet was produced based on the observations springtail. of leaping organ and the jumping analysis of the globular springtail. Jumping characteristics of the mechanism were examined with high-speed video II. EXPERIMENTAL METHOD camera system. A. Microscopic Observations Index Terms—Jumping Mechanism, Leaping Organ, Globular springtails are small insects that reach Springtail, Morphology, Jumping Characteristics around 1 mm in size. They have the jumping organ (furcula), which can be folded under the abdomen. Muscular action releasing the furcula can throw the I. INTRODUCTION insect well out of the way of predators. Jumping in insect movement is an effective way to In this paper, microscopic observations of the furcula escape predators, find food, and change locations. were conducted using the confocal laser scanning Grasshoppers, fleas, bush crickets, katydids, and locusts microscope. Confocal laser scanning microscopy is are particularly well known for jumping mechanisms to fluorescence – imaging technique that produces move around. -
Lista Monografii I Publikacji Z Listy Filadelfijskiej Z Lat 2016–2019 Monographs and Publications from the ISI Databases from 2016 Till 2019
Lista monografii i publikacji z Listy Filadelfijskiej z lat 2016–2019 Monographs and publications from the ISI databases from 2016 till 2019 2019 Artykuły/Articles 1. Bocheński Z.M., Wertz, K., Tomek, T., Gorobets, L., 2019. A new species of the late Miocene charadriiform bird (Aves: Charadriiformes), with a summary of all Paleogene and Miocene Charadrii remains. Zootaxa, 4624(1):41-58. 2. Chmolowska D., Nobis M., Nowak A., Maślak M., Kojs P., Rutkowska J., Zubek Sz. 2019. Rapid change in forms of inorganic nitrogen in soil and moderate weed invasion following translocation of wet meadows to reclaimed post-industrial land. Land Degradation and Development, 30(8): 964– 978. 3. Zubek Sz., Chmolowska D., Jamrozek D., Ciechanowska A., Nobis M., Błaszkowski J., Rożek K., Rutkowska J. 2019. Monitoring of fungal root colonisation, arbuscular mycorrhizal fungi diversity and soil microbial processes to assess the success of ecosystem translocation. Journal of Environmental Management, 246: 538–546. 4. Gurgul A., Miksza-Cybulska A., Szmatoła T., Jasielczuk I., Semik-Gurgul E., Bugno-Poniewierska M., Figarski T., Kajtoch Ł.2019. Evaluation of genotyping by sequencing for population genetics of sibling and hybridizing birds: an example using Syrian and Great Spotted Woodpeckers. Journal of Ornithology, 160(1): 287–294. 5. Grzędzicka E. 2019. Is the existing urban greenery enough to cope with current concentrations of PM2.5, PM10 and CO2? Atmospheric Pollution Research, 10(1): 219-233. 6. Grzywacz B., Tatsuta H., Bugrov A.G., Warchałowska-Śliwa E. 2019. Cytogenetic markers reveal a reinforcemenet of variation in the tension zone between chromosome races in the brachypterous grasshopper Podisma sapporensis Shir. -
A New Family of Coreoidea from the Lower Cretaceous Lebanese Amber (Hemiptera: Pentatomomorpha)
P O L I S H JOUR NAL OF ENTOMOLO G Y POLSKIE PISMO ENTOMOL OGICZ N E VOL. 80: 627-644 Gdynia 31 December 2011 DOI: 10.2478/v10200-011-0049-5 A new family of Coreoidea from the Lower Cretaceous Lebanese Amber (Hemiptera: Pentatomomorpha) DANY AZAR1, ANDRÉ NEL2, MICHAEL S. ENGEL3, 4, ROMAIN GARROUSTE2, ARMAND MATOCQ2 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, PO box 26110217, Fanar – Matn, Lebanon, e-mail: [email protected]; 2CNRS UMR 7205, CP 50, Entomologie, Muséum National d'Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France, e-mails: [email protected], [email protected], [email protected]; 3Division of Entomology (Paleoentomology), Natural History Museum, University of Kansas, Lawrence, KS 66049-2811, USA, e-mail: [email protected]; 4Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, KS 66049-2811, USA ABSTRACT. A new genus and species, Yuripopovina magnifica, belonging to a new coreoid family, Yuripopovinidae (Hemiptera: Pentatomomorpha), is described and illustrated from the Lower Cretaceous amber of Lebanon. The species represents the first definitive Mesozoic record for the Coreoidea. A cladistic analysis of Coreoidea, including the new family, is undertaken. KEY WORDS: Pentatomomorpha, Coreoidea, Yuripopovinidae, fam. n., gen. n., sp. n., Lebanon, phylogeny. INTRODUCTION The Pentatomomorpha with its 14 000 known living species (WEIRAUCH & SCHUH 2011) is the second largest of the seven heteropteran infraorders (SCHAEFER 1993, ŠTYS & KERZHNER 1975) (Enicocephalomorpha, Dipsocoromorpha, Gerromorpha, Nepomorpha, Leptodomorpha, Cimicomorpha, and Pentatomorpha). Most authors recognize five superfamilies within Pentatomomorpha, but there remains controversy regarding the 628 Polish Journal of Entomology 80 (4) composition of these superfamilies (SCHAEFER 1993, ŠTYS 1961). -
Visions & Reflections on the Origin of Smell: Odorant Receptors in Insects
Cell. Mol. Life Sci. 63 (2006) 1579–1585 1420-682X/06/141579-7 DOI 10.1007/s00018-006-6130-7 Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2006 Visions & Reflections On the ORigin of smell: odorant receptors in insects R. Benton Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, New York 10021 (USA), Fax: +1 212 327 7238, e-mail: [email protected] Received 23 March 2006; accepted 28 April 2006 Online First 19 June 2006 Abstract. Olfaction, the sense of smell, depends on large, suggested that odours are perceived by a conserved mecha- divergent families of odorant receptors that detect odour nism. Here I review recent revelations of significant struc- stimuli in the nose and transform them into patterns of neu- tural and functional differences between the Drosophila ronal activity that are recognised in the brain. The olfactory and mammalian odorant receptor proteins and discuss the circuits in mammals and insects display striking similarities implications for our understanding of the evolutionary and in their sensory physiology and neuroanatomy, which has molecular biology of the insect odorant receptors. Keywords. Olfaction, odorant receptor, signal transduction, GPCR, neuron, insect, mammal, evolution. Olfaction: the basics characterised by the presence of seven membrane-span- ning segments with an extracellular N terminus. OR pro- Olfaction is used by most animals to extract vital infor- teins are exposed to odours on the ciliated endings of olf- mation from volatile chemicals in the environment, such actory sensory neuron (OSN) dendrites in the olfactory as the presence of food or predators. -
Species-Specific Recognition of Beetle Cues by the Nematode Pristionchus Maupasi
EVOLUTION & DEVELOPMENT 10:3, 273–279 (2008) Species-specific recognition of beetle cues by the nematode Pristionchus maupasi RayL.Hong,a Alesˇ Svatosˇ,b Matthias Herrmann,a and Ralf J. Sommera,Ã aDepartment for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany bMax-Planck Institute for Chemical Ecology, Mass Spectrometry Research Group, Jena, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY The environment has a strong effect on studies originally established in Caenorhabditis elegans.We development as is best seen in the various examples of observed that P. maupasi is exclusively attracted to phenol, phenotypic plasticity. Besides abiotic factors, the interactions one of the sex attractants of Melolontha beetles, and that between organisms are part of the adaptive forces shaping the attraction was also observed when washes of adult beetles evolution of species. To study how ecology influences were used instead of pure compounds. Furthermore, development, model organisms have to be investigated in P. maupasi chemoattraction to phenol synergizes with plant their environmental context. We have recently shown that the volatiles such as the green leaf alcohol and linalool, nematode Pristionchus pacificus and its relatives are closely demonstrating that nematodes can integrate distinct associated with scarab beetles with a high degree of species chemical senses from multiple trophic levels. In contrast, specificity. For example, P. pacificus is associated with the another cockchafer-associated nematode, Diplogasteriodes oriental beetle Exomala orientalis in Japan and the magnus, was not strongly attracted to phenol. We conclude northeastern United States, whereas Pristionchus maupasi that interception of the insect communication system might be is primarily isolated from cockchafers of the genus Melolontha a recurring strategy of Pristionchus nematodes but that in Europe.