DISCLAIMER This paper was submitted to the Bulletin of the World Health Organization and was posted to the Zika open site, according to the protocol for public health emergencies for international concern as described in Christopher Dye et al. ( http://dx.doi.org/10.2471/BLT.16.170860 ). The information herein is available for unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited as indicated by the Creative Commons Attribution 3.0 Intergovernmental Organizations licence (CC BY IGO 3.0). RECOMMENDED CITATION Taylor EW, Ruzicka JA. Antisense inhibition of selenoprotein synthesis by Zika virus may contribute to neurological disorders and microcephaly by mimicking SePP1 knockout and the genetic disease PCCA. [Submitted]. Bull World Health Organ. E-pub: 13 July 2016. doi: http://dx.doi.org/10.2471/BLT.16.182071 Antisense inhibition of selenoprotein synthesis by Zika virus may contribute to neurological disorders and microcephaly by mimicking SePP1 knockout and the genetic disease progressive cerebello-cerebral atrophy a b Ethan Will Taylor & Jan A. Ruzicka aDept. of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, PO Box 26170, Greensboro, NC 27402-6170, United States of America bDept. of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, NC 27268, United States of America Correspondence to Ethan Taylor (email:
[email protected] ) (Submitted: 7 July 2016 – Published online: 13 July 2016) Zika-mediated antisense inhibition of selenoprotein synthesis and microcephaly, E.W. Taylor and J.A. Ruzicka, 2016 Abstract Objective: Selenium status plays a major role in health impacts of various RNA viruses.