Indonesian Landforms and Plate Tectonics

Total Page:16

File Type:pdf, Size:1020Kb

Indonesian Landforms and Plate Tectonics Jurnal Geologi Indonesia, Vol. 5 No. 3 September 2010: 197-207 Indonesian Landforms and Plate Tectonics H. TH. VERSTAPPEN The International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, the Netherlands, Mozartlaan 188, 7522HS ABSTRACT The horizontal con¿guration and vertical dimension of the landforms occurring in the tectonically unstaEle parts of ,ndonesia were resulted in the ¿rst place from plate tectonics. 0ost of them date from the 4uaternary and endogenous forces are ongoing. Three maMor plates ± the northward moving ,ndo- Australian 3late, the south-eastward moving SE-Asian 3late and the westward moving 3aci¿c 3late - meet at a plate triple-Munction situated in the south of 1ew Guinea‘s Bird‘s Head. The narrow 1orth-0oluccan plate is interposed Eetween the Asia and 3aci¿c. ,t tapers out northward in the 3hilippine 0oEile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate Eoundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the ¿rst place related to the resistance of the rocNs to humid tropical weathering Rising mountain ranges and emerging island arcs are suEMected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adMacent sedimentary Easins where their increasing weight causes suE- sidence Ey gravity and isostatic compensations. /iving and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-Munction and in the 0oluccas. 0odern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting from the collision of India with the Asian continent, around 50.0 my. ago, and the ¿nal collision of Australia with the 3aci¿c, aEout 5.0 my. ago, also had an important impact on geomorphologic processes and the natural environment of SE-Asia through changes of the monsoonal wind system in the region and of the oceanic thermo-haline circulation in eastern ,ndonesia Eetween the 3aci¿c and the ,ndian ocean. ,n addition the landforms of the region were, of course, affected Ey the 4uaternary gloEal climatic fiuctuations and sea level changes. Keywords: mega landforms, morphostructures, plate tectonics, Indonesia SARI Kon›gurasi horisontal dan dimensi vertikal bentang alam terjadi di wilayah-wilayah Indonesia, yang secara tektonik tidak stabil terutama sebagai akibat dari pergerakan lempeng tektonik. Sebagian Eesar Eentang alam terseEut Eerumur .uarter dan dipengaruhi oleh gaya-gaya endogen. Tiga lempeng utama yaitu Lempeng Indo-Australia yang bergerak ke utara, Lempeng Asia Tenggara yang bergerak ke tenggara, dan Lempeng Pasi›k yang bergerak ke arah barat, bertemu pada satu simpang tiga (triple junction) yang terletak di selatan Kepala Burung, Papua. Lempeng Maluku Utara yang sempit menyisip antara Asia dan Pasi›k, Lempeng ini miring ke utara pada sabuk Filipina yang mobil dan berangsur menghilang. Amplitudo relief yang terbesar terjadi dekat batas-batas lempeng: parit laut dalam yang berasosiasi dengan zona subduksi dan MDMaran pegunungan dengan sabuk tumbukan. Bentang alam daerah-daerah yang lebih stabil terdapat pada lempeng yang berumur jauh lebih tua dan tempat pemunculannya mempunyai relief yang lebih mudah berubah. Hal ini berkaitan dengan resistensi batuan terhadap pelapukan tropis lembab. -DMaran pegunungan dan busur kepulauan yang Naskah diterima 30 Juli 2010, revisi kesatu: 04 Agustus 2010, revisi kedua: 31 Agustus 2010, revisi terakhir: 02 September 2010 197 198 Jurnal Geologi Indonesia, Vol. 5 No. 3 September 2010: 197-207 terbentuk, mengalami erosi yang cepat oleh sungai tropis lembab dan gerakan tanah. Produk erosi menumpuN di ceNungan sedimen yang terdeNat. 3eningNatan penyeEaran dan NeteEalan sedimen tersebut menyebabkan terjadinya terban oleh gravitasi dan kompensasi isostatik. Terumbu karang yang hidup dan tumEuh, gunung Eerapi dan gawir sesar merupaNan indiNator geomor¿N penting lempeng tektonik aktif. Bagian-bagian sesar mungkin sangat mempengaruhi busur kepulauan yang meregang tegak lurus terhadap pergerakan lempeng. Kasus ini terjadi di Pulau Jawa. Sesar mendatar dan cekungan-cekungan tarikan adalah faktor penciri adanya pertemuan lempeng yang menyudut satu sama lain, seperti halnya di Sumatra. Situasi paling rumit ditemukan di dekat persimpangan-tiga (triple junction) dan di Maluku. Metode penelitian modern, seperti pengukuran pergerakan lempeng dengan GPS dan pentarikhan absolut produk gunung api dan tumbuhnya terumbu karang merupakan cara yang penting. Mega-bentang alam akibat benturan India dengan Benua Asia, sekitar 50 jtl., dan akhir tumbukan Australia dengan Pasi›k, sekitar 5 jtl., juga memiliki dampak penting pada proses geomorfologi dan lingkungan alam di Asia Tenggara melalui perubahan sistem angin musiman di wilayah dan sirkulasi termo-haline samudera di Indonesia timur antara Pasi›k dan Samudra Hindia. Selain itu bentang alam wilayah ini, tentu saja, dipengaruhi oleh fiuktuasi iklim global Kuarter dan perubahan permukaan air laut. Kata kunci: mega bentang alam, struktur morfo, tektonik lempeng, Indonesia INTRODUCTION patterns of swamps and other characteristics of alluvial plains, coastal con¿guration, etc. The landforms of ,ndonesia and adMacent areas The three most important plates affecting the are strongly related to 4uaternary 3late tectonics. Indonesian region are the SE-Asian Plate, the Indo- This applies especially to the volcanic- and non- Australian 3late, and the 3aci¿c 3late. They can Ee volcanic island arcs of the archipelago (Hamilton, subdivided into a number of smaller Plates and meet 1979; Hall and Blundell, 1996; Gupta, 2003). at a triple Munction situated south of 1ew Guinea‘s Their spatial distribution reveals the location of Bird‘s Head. ,n addition, the narrow 1orth 0oluccan suEduction- and collision zones caused Ey the Plate is interposed in the north between the Sulawesi lateral movement of a number of tectonic Plates. Sea Plate, an oceanic associate of the SE-Asian Plate, Most of these subduction- and collision zones are and the Philippine Sea Plate, a forerunner of the active and characterized Ey great suE-marine and 3aci¿c 3late. They Eoth suEduct under the 1orth- suE-aerial relief amplitudes that have strongly Moluccan Plate (Kreemer et al., 2000). This plate increased during the 4uaternary. Emerged island tapers out northward in the 3hilippine 0oEile Belt arcs and rising mountain ranges are suEMected to that extends up to Taiwan. (Figure 1) Active subduc- intense humid-tropical weathering processes, river tion zones form deep trenches with important nega- erosion and mass movements. The erosion prod- tive gravity anomalies. The three main ones are the ucts accumulate in adMacent sedimentary Easins trough situated south of the Sunda Arc and curving where their increasing weight causes subsidence up northward to the east of the Banda Arc, and the Ey gravity and isostatic compensation. The relief troughs occurring respectively to the east and west of amplitude of the Plates is much less and the land- the 1orth 0oluccan 3late / 3hilippine 0oEile Belt. forms of their emerged parts around the Sunda- and Active volcanism is associated with belts of Sahul/ Arafura shelves indicate an advanced stage ongoing Plate subduction. The longest row is that of development related to geological events of a connected with the subduction of the northward more remote past. The landforms in these parts of moving Indian Ocean Plate in Sumatra, Java, Nusa the country now refiect differences in resistance Tenggara and the SE-Moluccas. The volcanic activ- of the rocks to humid tropical weathering in the ity of this row is extinct only on the islands of Alor ¿rst place. Several geomorphic indicators exist for and Wetar, where Timor, an outpost of the Austra- detecting zones of neo-tectonics in the lowlands. lian continent, collides with it. Active volcanism They include drainage anomalies, distriEutional also accompanies the subduction zones situated Indonesian Landforms and Plate Tectonics (H. Th. Verstappen) 199 1000 E 110 0E 1200 E 1300 E 1400 E 1500 E nch N re u T ky Ryu 0 0 20 N ch 20 N n Tre P h PHILIPPINE SEA PLATE PHILI PI E MO LE BELiT a il Tre ch l i p n M n la n p i i n n SOUTH CHINA P N BI e Bo T SEA PLATE r e n c h na aria 10 0N M 10 0N PACIFIC PLATE SULU SEA PLATE N- O UC S M L CA SE S AIN PL TE -AA SULAWESI SEA PLATE Kalimantan CAROLINE PLATE uS am ALTPE 0 Sunda 0 0 tra 0 Belt S t u rren n nscu d Tra a Tr New Guinea enc h Triple Junction Jawa Jav Shelf 10 0S a Tre Sahul - arafura 100 S nch INDO - AUSTRALIAN PLATE 1000 E 110 0E 1200 E 1300 E 1400 E 1500 E Legend: Plate movement direction Figure 1. The plate-tectonic con›guration of Indonesia and surroundings (Katili, 1980). at both sides of the North Moluccan Plate, in the left-lateral Sorong - Koor fault zone stretching from 0inahasa and northern Halmahera respectively. the north coast of New Guinea to the Moluccas, These two volcanic arcs continue in the two paral- and the left-lateral Philippine fault zone that can be lel and closely spaced rows of active volcanoes in traced from northern Luzon up to Halmahera. The the 3hilippine 0oEile Belt (-avelosa, 1994). 9ol- Semangko zone is the scene of a number of pull- canism is extinct in western Sulawesi because the apart basins with related volcanic phenomena. The northward moving Australian 3late ElocNed 3aci¿c Sorong - .oor fault strongly affects the 0amEeramo suEduction already in the Tertiary.
Recommended publications
  • (2019): Upper-Mantle Density Structure in the Philippine Sea and Adjacent Region and Its Relation to Tectonics
    Originally published as: Liang, Q., Chen, C., Kaban, M. K., Thomas, M. (2019): Upper-mantle density structure in the Philippine Sea and adjacent region and its relation to tectonics. - Geophysical Journal International, 219, 2, pp. 945—957 DOI: http://doi.org/10.1093/gji/ggz335 This article has been accepted for publication in Geophysical Journal International ©The Author(s) 2019. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Geophys. J. Int. (2019) 219, 945–957 doi: 10.1093/gji/ggz335 Advance Access publication 2019 July 30 GJI Gravity, Geodesy and Tides Upper-mantle density structure in the Philippine Sea and adjacent region and its relation to tectonics Downloaded from https://academic.oup.com/gji/article-abstract/219/2/945/5541063 by Geoforschungszentrum Potsdam user on 06 September 2019 Qing Liang,1,2 Chao Chen,1,2 Mikhail K. Kaban2,4 and Maik Thomas2,3 1Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, P.R. China. E-mail: [email protected]; [email protected] 2Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam 14473,Germany 3Institute of Meteorology, Freie Universitat¨ Berlin, Berlin 12165,Germany 4Schmidt Institute of Physics of the Earth RAS, Moscow 123242, Russia Accepted 2019 July 20. Received 2019 June 14; in original form 2019 February 27 SUMMARY The evolution of the Philippine Sea Plate (PSP) since Jurassic is one of the key issues in the dynamics of lithosphere and mantle. The related studies benefited mostly from seismic tomography which provides velocity structures in the upper mantle.
    [Show full text]
  • Playing Jigsaw with Large Igneous Provinces a Plate Tectonic
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Playing jigsaw with Large Igneous Provinces—A plate tectonic 10.1002/2015GC006036 reconstruction of Ontong Java Nui, West Pacific Key Points: Katharina Hochmuth1, Karsten Gohl1, and Gabriele Uenzelmann-Neben1 New plate kinematic reconstruction of the western Pacific during the 1Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany Cretaceous Detailed breakup scenario of the ‘‘Super’’-Large Igneous Province Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, Ontong Java Nui Ontong Java Nui ‘‘Super’’-Large and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi- Igneous Province as result of larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein plume-ridge interaction referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences Correspondence to: in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java K. Hochmuth, [email protected] Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario Citation: for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac- Hochmuth, K., K. Gohl, and tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The G.
    [Show full text]
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Present-Day Crustal Motion in the Solomon Islands from GPS
    GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 19, PAGES 3627-3630, OCTOBER 1, 1998 Present-day crustal motion in the Solomon Islands from GPS observations Paul Tregoning Research School of Earth Sciences, The Australian National University, Canberra, Australia Francis Tan, John Gilliland School of Geoinformatics, Planning and Building, The University of South Australia, Adelaide, Australia Herbert McQueen and Kurt Lambeck Research School of Earth Sciences, The Australian National University, Canberra, Australia Abstract. Site velocities in the Solomon Islands from Ontong Java Plateau (OJP) collided with the Solomon Arc, Global Positioning System measurements spanning two years probably ∼20 to 25 Ma [e.g. Coleman and Kroenke, 1981; provide direct evidence of active deformation between the Kroenke, 1984; Yan and Kroenke, 1993]. Since that time it Pacific Plate and the Solomon Arc block. Convergence is is thought that subduction of the Pacific Plate ceased dur- occurring at the San Cristobal Trench at a rate of ∼524 ing the Early Miocene but it may have recommenced in the mm/yr, with no apparent local deformation occurring in the Mid-Miocene. About 10 Ma polarity reversal occurred and Australian Plate at a distance of ∼100 km from the trench. the Australian Plate began subducting to the northeast at The islands of Guadalcanal and Makira are in a first ap- the New Britain and San Cristobal Trenches, thus creating proximation moving with the Pacific Plate although there is the southern islands of the New Georgia group, Bougainville evidence of small but significant decoupling from the Pacific and Buka Island [Vedder and Bruns, 1989]. Active shallow Plate of 14-23 mm/yr in a direction of 75-85◦.
    [Show full text]
  • The Sub-Crustal Stress Field in the Taiwan Region
    Terr. Atmos. Ocean. Sci., Vol. 26, No. 3, 261-268, June 2015 doi: 10.3319/TAO.2014.12.04.01(T) The Sub-Crustal Stress Field in the Taiwan Region Robert Tenzer1, * and Mehdi Eshagh 2 1 The Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics, Wuhan University, Wuhan, China 2 Department of Engineering Science, University West, Trollhättan, Sweden Received 22 May 2014, revised 3 December 2014, accepted 4 December 2014 ABSTRACT We investigate the sub-crustal stress in the Taiwan region. A tectonic configuration in this region is dominated by a col- lision between the Philippine oceanic plate and the Eurasian continental margin. The horizontal components of the sub-crustal stress are computed based on the modified Runcorn’s formulae in terms of the stress function with a subsequent numerical differentiation. This modification increases the (degree-dependent) convergence domain of the asymptotically-convergent series and consequently allows evaluating the stress components to a spectral resolution, which is compatible with currently available global crustal models. Moreover, the solution to the Vening Meinesz-Moritz’s (VMM) inverse isostasy problem is explicitly incorporated in the stress function definition. The sub-crustal stress is then computed for a variable Moho geometry, instead of assuming only a constant Moho depth. The regional results reveal that the Philippine plate subduction underneath the Eurasian continental margin generates the shear sub-crustal stress along the Ryukyu Trench. Some stress anomalies asso- ciated with this subduction are also detected along both sides of the Okinawa Trough. A tensional stress along this divergent tectonic plate boundary is attributed to a back-arc rifting.
    [Show full text]
  • Lake Toba: Insights and Options for Improving Water Quality
    Public Disclosure Authorized Lake Toba: Insights and Options for Improving Water Quality ■ Lake Toba is a unique natural asset of global significance located in the North Sumatra Province of Indonesia. The Lake has a rich cultural heritage and provides a wide range of environmental goods and services, making it one of Indonesia’s priority tourism Public Disclosure Authorized destinations for development. ■ Tourism has the potential to attract more than 3.3 million visitors by 2041 (includ- ing 265,000 foreign visitors). This could provide long-term sustainable opportunities, including 5,000 additional jobs and an increase in annual tourism spending of IDR 2,200 billion (US$162 million).1 ■ Sustaining the long-term economic and environmental value of Lake Toba depends on addressing the deterioration of water quality. Acceleration in the deterioration of water quality since the mid-1990s has been driven by excessive nutrient load- ing resulting in algal blooms, massive fish kills, and health concerns. As one of the world’s deepest volcano tectonic Public Disclosure Authorized lakes, management of water quality in Lake Toba is further constrained by an 80-year residence time (i.e., time required to replace water) and non-homogenous mixing that results in compartmentalization of the lake’s water (Figure 3). ■ Sustainable solutions for addressing the deterioration of water quality are essential for realizing the long-term tourism opportunities and securing sustainable economic develop- ment pathways. ■ A collaborative process involving local stakeholders, national agencies/ministries/organizations and international experts has pro- posed a set of investments to help improve water quality in Lake Toba.
    [Show full text]
  • How Mount Agung's Eruption Can Create the World's Most Fertile Soil
    How Mount Agung's eruption can create the world's most fertile soil https://theconversation.com/how-mount-agungs-eruption-can-create-the... Disiplin ilmiah, gaya jurnalistik How Mount Agung’s eruption can create the world’s most fertile soil Oktober 5, 2017 3.58pm WIB Balinese farmers with Mount Agung in the background. Areas with high volcanic activity also have some of the world’s most fertile farmlands. Reuters/Darren Whiteside Mount Agung in Bali is currently on the verge of eruption, and more than 100,000 Penulis people have been evacuated. However, one of us (Dian) is preparing to go into the area when it erupts, to collect the ash. This eruption is likely to be catastrophic, spewing lava and ashes at temperatures up to Budiman Minasny 1,250℃, posing serious risk to humans and their livelihoods. Ash ejected from volcano Professor in Soil-Landscape Modelling, not only affects aviation and tourism, but can also affect life and cause much nuisance to University of Sydney farmers, burying agricultural land and damaging crops. However, in the long term, the ash will create world’s most productive soils. Anthony Reid Emeritus Professor, School of Culture, 1 of 5 10/7/2017, 5:37 AM How Mount Agung's eruption can create the world's most fertile soil https://theconversation.com/how-mount-agungs-eruption-can-create-the... History and Language, Australian National University Dian Fiantis Professor of Soil Science, Universitas Andalas Alih bahasa Bahasa Indonesia English Read more: Bali’s Mount Agung threatens to erupt for the first time in more than 50 years While volcanic soils only cover 1% of the world’s land surface, they can support 10% of the world’s population, including some areas with the highest population densities.
    [Show full text]
  • Visualization of the Geophysical Settings in the Philippine Sea Margins by Means of GMT and ISC Data
    Central European Journal of Geography and Sustainable Development 2020, Volume 2, Issue 1, Pages: 5-15 ISSN 2668-4322, ISSN-L 2668-4322 https://doi.org/10.47246/CEJGSD.2020.2.1.1 Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data Polina Lemenkova* Ocean University of China, College of Marine Geo-sciences, 238 Songling Rd, Laoshan, 266100, Qingdao, Shandong, China; [email protected] Received: 22 February 2020; Revised: 12 March 2020; Accepted: 20 March 2020; Published online: 25 March 2020 _________________________________________________________________________________________________________________________ Abstract: The presented research aimed to perform geophysical modelling (gravity and geoid) and to evaluate the spatio-temporal variation of the marine geological data (distribution and depth of earthquakes) using combination of the Generic Mapping Tools (GMT) and available sources from the International Seismological Centre (ISC-EHB) that produce data on earthquakes as part of seismic survey and regional research projects. The target study area is a Philippine Sea basin (PSB) with two focused marginal areas: Philippine Trench and Mariana Trench, two hadal trenches located in the places of the tectonic plates subduction. Marine free-air gravity anomaly in the PSP shows higher values (>80 mGal) of the gravity fields structure at the volcanic areas and Philippine archipelago. Current study presented comparative geophysical analysis, and mapping free-air gravity and geoid in the Philippine Sea basin area. As a result of this study, the average level of earthquakes located in the Philippine Trench and Mariana Trench areas were compared, and those located in the Philippine archipelago are determined to be in the souther-western part (area of west Mindanao, south-west Visayas islands), while Luzon Islands shown shallower located earthquakes.
    [Show full text]
  • Active Continental Margin
    Encyclopedia of Marine Geosciences DOI 10.1007/978-94-007-6644-0_102-2 # Springer Science+Business Media Dordrecht 2014 Active Continental Margin Serge Lallemand* Géosciences Montpellier, University of Montpellier, Montpellier, France Synonyms Convergent boundary; Convergent margin; Destructive margin; Ocean-continent subduction; Oceanic subduction zone; Subduction zone Definition An active continental margin refers to the submerged edge of a continent overriding an oceanic lithosphere at a convergent plate boundary by opposition with a passive continental margin which is the remaining scar at the edge of a continent following continental break-up. The term “active” stresses the importance of the tectonic activity (seismicity, volcanism, mountain building) associated with plate convergence along that boundary. Today, people typically refer to a “subduction zone” rather than an “active margin.” Generalities Active continental margins, i.e., when an oceanic plate subducts beneath a continent, represent about two-thirds of the modern convergent margins. Their cumulated length has been estimated to 45,000 km (Lallemand et al., 2005). Most of them are located in the circum-Pacific (Japan, Kurils, Aleutians, and North, Middle, and South America), Southeast Asia (Ryukyus, Philippines, New Guinea), Indian Ocean (Java, Sumatra, Andaman, Makran), Mediterranean region (Aegea, Cala- bria), or Antilles. They are generally “active” over tens (Tonga, Mariana) or hundreds (Japan, South America) of millions of years. This longevity has consequences on their internal structure, especially in terms of continental growth by tectonic accretion of oceanic terranes, or by arc magmatism, but also sometimes in terms of continental consumption by tectonic erosion. Morphology A continental margin generally extends from the coast down to the abyssal plain (see Fig.
    [Show full text]
  • Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction Lallemand
    Progress in Earth and Planetary Science Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Lallemand Lallemand Progress in Earth and Planetary Science (2016) 3:15 DOI 10.1186/s40645-016-0085-6 Lallemand Progress in Earth and Planetary Science (2016) 3:15 Progress in Earth and DOI 10.1186/s40645-016-0085-6 Planetary Science REVIEW Open Access Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Serge Lallemand1,2 Abstract We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60–55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ∼54–48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called “fore-arc basalts” (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ∼52–50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere.
    [Show full text]
  • The Semilir Eruption, East Java, Indonesia
    Lithos 126 (2011) 198–211 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos A Toba-scale eruption in the Early Miocene: The Semilir eruption, East Java, Indonesia Helen R. Smyth a,b,⁎, Quentin G. Crowley c,d, Robert Hall b, Peter D. Kinny e, P. Joseph Hamilton e, Daniela N. Schmidt f a CASP, Department of Earth Sciences, University of Cambridge, West Building, 181a Huntingdon Road, Cambridge, CB3 0DH, UK b SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK c NERC Isotope Geosciences Laboratory, British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, UK d Geology, School of Natural Sciences, Trinity College, Dublin 2, Ireland e The Institute for Geoscience Research, Department of Applied Geology, Curtin University, Perth 6845, Australia f Department of Earth Sciences, University of Bristol BS8 1RJ, UK article info abstract Article history: The Indonesian archipelago is well-known for volcanic activity and has been the location of three catastrophic Received 28 March 2011 eruptions in the last million years: Krakatau, Tambora and Toba. However, there are no reports of large Accepted 19 July 2011 magnitude eruptions during the earlier Cenozoic despite a long volcanic record in Indonesia during Available online xxxx subduction of Indian Ocean lithosphere since the Eocene. Here we report an Early Miocene major eruption, the Semilir eruption, in south Java, the main phase of which occurred at 20.7±0.02 Ma. This major volcanic Keywords: eruption appears similar in scale, but not in type, to the 74 ka Toba event.
    [Show full text]