By Stephen J. Lawrence Water-Resources Investigations

Total Page:16

File Type:pdf, Size:1020Kb

By Stephen J. Lawrence Water-Resources Investigations WATER-RESOURCES APPRAISAL OP THE LAKE TRAVERSE INDIAN RESERVATION IN SOUTH DAKOTA By Stephen J. Lawrence U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 88-4031 Huron, South Dakota 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Rm. 408, Federal Bldg. Federal Center, Bldg. 810 200 4th St. SW Box 25425 Huron, SD 57350 Denver, CO 80225-0425 CONTENTS Page Abstract ................................ 1 Introduction .............................. 1 Physiography ........................... 2 Climate .............................. 2 Geology .............................. 6 Surface water .............................. 6 Surface-water quantity ....................... 15 Streams ............................ 15 Lakes ............................. 21 Surface-water quality ....................... 21 Streams ............................ 21 Lakes ............................. 27 Ground water .............................. 31 Hydrogeology ............................ 32 Ground-water quality ........................ 35 Needed additional studies ........................ 38 Summary ................................. 40 Selected references ........................... 41 ILLUSTRATIONS Page Figure 1. Map showing the location of the Lake Traverse Indian Reservation in South Dakota ................. 3 2. Map showing physiographic divisions in and near the Lake Traverse Indian Reservation ............... 4 3. Graphs showing 30-year (1951-80) mean monthly precipitation and the 95th-percentile value for selected sites in and near the Lake Traverse Indian Reservation ........ 5 4. Map showing bedrock geology in and near the Lake Traverse Indian Reservation ............... 7 5. Map showing glacial deposits of Pleistocene and Holocene age in and near the Lake Traverse Indian Reservation ..... 8 6. Geologic section across the northern part of the Lake Traverse Indian Reservation ............... 9 7. Map showing contributing drainage area of the Big Sioux River basin upstream from confluence with Mud Creek and location of streamflow-gaging stations in the contributing part of the basin in and near the Lake Traverse Indian Reservation ............. 11 8. Map showing noncontributing drainage areas of the Big Sioux and James River basins and location of selected lakes in and near the Lake Traverse Indian Reservation .... 12 9. Map showing drainage area of the Souris-Red-Rainy River basin and location of streamflow-gaging stations in and near the Lake Traverse Indian Reservation ........ 13 10. Map showing drainage area of the Upper Mississippi River basin and location of streamflow-gaging stations in and near the Lake Travervse Indian Reservation ...... 14 11. Graphs showing statistics of mean daily discharge for the period of record at three streamflow-gaging stations in and near the Lake Traverse Indian Reservation ....... 16 12. Graphs showing statistics of cumulative runoff for the period of record at three streamflow-gaging stations in and near the Lake Traverse Indian Reservation ....... 19 13. Graphs showing 7-day, 10-year and 15-day, 10-year minimum discharges for the period of record at three streamflow- gaging stations in and near the Lake Traverse Indian Reservation ......................... 20 14. Graphs showing lake levels and corresponding total rainfall at Sisseton for water years 1936-76 ......... 23 15. Diagrams of water quality at three stream sites in and near the Lake Traverse Indian Reservation .......... 24 16. Diagrams of water quality of four lakes in and near the Lake Traverse Indian Reservation ............. 28 17. Map showing depth below land surface and thickness of sand and gravel deposits in the Lake Traverse Indian Reservation ............... 33 18. Map showing water-table altitude in surficial sand or gravel in the Lake Traverse Indian Reservation ........ 34 19. Diagrams of ground-water quality by well depth for wells in and near the Lake Traverse Indian Reservation .... 36 20. Trilinear plot of water chemistry by well depth for wells in and near the Lake Traverse Indian Reservation .... 39 xv TABLES Page Table 1. Streamflow-gaging stations operated by the U.S. Geological Survey in and near the Lake Traverse Indian Reservation . 15 2. Magnitude and recurrence interval of instantaneous peak flow at gaging stations in and near the Lake Traverse Indian Reservation ............... 18 3. Physical characteristics of selected lakes in and near the Lake Traverse Indian Reservation ........... 22 4. Summary of water-quality data for the Bois de Sioux River near White Rock .................. 26 5. Lakes in and near the Lake Traverse Indian Reservation grouped by median concentrations of dissolved solids . 30 CONVERSION FACTORS For readers who may prefer to use metric (International System) units rather than inch-pound units, the conversion factors for the inch-pound units used in this report are listed below: Multiply inch-pound unit By. To obtain metric unit acre 0.4047 hectare acre-foot (acre-ft) 1,234 cubic meter cubic foot per second 0.02832 cubic meter per second (ft 3 /s) foot (ft) 0.3048 meter foot per mile (ft/mi) 0.1894 meter per kilometer inch 25.4 millimeter mile (mi) 1.609 kilometer mile per hour (mi/h) 1.609 kilometer per hour square mile (mi 2 ) 2.590 square kilometer To convert degrees Celsius (°C) to degrees Fahrenheit (°F) use the following formula: °F = 1.8 x °C + 32. Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Mean Sea Level." WATER-RESOURCES APPRAISAL OF THE LAKE TRAVERSE INDIAN RESERVATION IN SOUTH DAKOTA By Stephen J. Lawrence ABSTRACT The water resources within the Lake Traverse Indian Reservation consist of streams, lakes/ wetlands, and ground water stored in alluvium and glacial outwash deposits. Streamflow may cease during dry periods and during the winter. Lakes and ponds within the reservation are located predominantly within internally drained basins. Evaporation and ground-water recharge affect the fluctuations in lake levels and the water quality of the lakes. Dissolved-solids concentrations in lakes generally range from 500 to 10,000 milligrams per liter. Dissolved-solids concentrations in streams generally range from 500 to 1,000 milligrams per liter; the water generally is suitable for domestic, agricultural, and some industrial use. However, nutrient concentrations tend to be greater than natural background concentra­ tions in both lakes and streams, and indicate unidentified sources of nutrients that affect the water quality. The development of surface-water resources is hindered by a lack of storage capacity within the numerous lakes, a lack of sustained streamflow, and a lack of suitable sites for construction of reservoirs. Therefore, the ground-water resource remains the only source with a potential for development into dependable water supplies within the reservation. Ground-water resources within the Coteau des Prairies, a glacial upland, occur within glacial-outwash and alluvial deposits. Recharge and discharge points may be present in the Coteau where gravel deposits are within 5 feet of land surface. Locally, the sand and gravel deposits in the Coteau may be as thick as 70 feet. The water within these sand and gravel deposits generally is suitable for most uses; calcium, magnesium, and bicarbonate are the dominant ions. Ground water also occurs in sand and gravel deposits within the Minnesota River-Red River lowlands. Water in these deposits tends to be more mineralized than water in the sand and gravel deposits in the Coteau des Prairies. The regional ground-water flow generally is to the east in the Minnesota River-Red River lowlands, and to the west in the Coteau des Prairies. Additional data are needed to define the ground-water resource with sufficient detail to allow knowledgeable development of ground-water supplies. INTRODUCTION A knowledge of the quantity and quality of both surface- and ground- water resources is an important component of any plan designed to direct the economic development of semiarid areas such as South Dakota. Both the Indian tribal councils and the U.S. Bureau of Indian Affairs have become keenly aware of the importance of water to the Indian tribes of South Dakota. Such awareness has been increased by debate about Indian water rights, particu­ larly with respect to the "first in time, first in right" and "use it or lose it" concepts in the "appropriation" and "riparian" doctrines of water law, and by the need for additional water supplies to support the expanding agri­ cultural base and expanding domestic needs on the Indian reservations. In meeting this need for water-resources knowledge, most of the tribal councils have completed at least limited studies of the water resources within their reservations. Prior to this study, the Lake Traverse Indian Reservation was the only reservation in South Dakota without such a study. This study of the Lake Traverse Indian Reservation in South Dakota (fig. 1) brings into a single document both published and unpublished data and information regarding the surface- and ground-water resources in the reservation. The 105 mi 2 of the reservation within North Dakota was not con­ sidered in
Recommended publications
  • BIG STONE LAKE State Park Management Plan April 1984
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp (Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.) BIG STONE LAKE State Park Management Plan April 1984 d STATE OF ~~~~©u~ DEPARTMENT OF NATURAl RESOURCES BOX , CENTENNIAL OFFICE BUILDING • ST. PAUL, MINNESOTA • 55155 DNR INFORMATION (612} 296-6157 FILE NO. _____ April 13, 1984 Dear Concerned Citizens: A draft management plan for Big Stone Lake State Park has been completed by the Department of Natural Resources, Park Planning Section. This plan was prepared under the authority of the Outdoor Recreation Act of 1975. Copies of this draft management plan are available for review at the Ortonville Public Library, Graceville Public Library, Big Stone State Park Office, and the DNR Regional Office in New Ulm. Any comments you have on the plan should be made in writing and addressed to: Dennis Thompson or Carol Braun Park Planning Section Box lOE, Centennial Building .St. Paul, MN 55155 t e 1 e : ( 61 2) 2 9 6-0 5 01 The Outdoor Reacreation Act of 1975 provides for a 30 day review period in which comments may be made by the public. A public open house will be held at the Ortonville National Guard Armory on Thursday, May 3, 1984, come anytime between 1:00-4:30 and 6:00-9:00 p.m. During this open house the park planning staff will be available to answer questions and discuss the plan.
    [Show full text]
  • Early History of Lake Agassiz in Southeast North Dakota
    JOHN P. BLUEMLE North Dakota Geological Survey, University Station, Grand Forks, North Dakota 58201 Early History of Lake Agassiz in Southeast North Dakota Extensive accumulations of collapsed lake and shore sediment are present above the Herman level adjacent to the Agassiz lake plain in southeast North Dakota. The presence of these deposits indicates that ice-dammed lakes existed on top of stagnant glacial ice while Lake Agassiz was develop- ing. Lake Agassiz did not simply expand northward from its southern end; but rather, when the superglacial lakes coalesced, the resulting Lake Agassiz flooded areas along much of the length of the Herman Beach. INTRODUCTION The Herman Beach has long been considered to mark the earliest and uppermost level reached by glacial Lake Agassiz. Even though lake deposits at elevations slightly above Herman level have been described in association with Lake Agassiz, these have always been attributed to small, short-lived lakes. Upham (1895) Figure 1. Location map showing the Agassiz and Dakota lake plains (stippled areas), and the area (diagonally ruled) of high strandlines in southeast North Dakota. The high-level lakes drained through the spillway to glacial found evidence for pre-Herman strandlines Lake Dakota while at the Norma and Cuba strands, through Lake Traverse and Big Stone Lake to the glacial River in southeast North Dakota at elevations Warren (now the Minnesota River valley) while at the Fingal and Alice strands. The outlined area is shown on Fig- about 20 ft above the Herman level. He ures 3,4, and 5. reported evidence for the narrow Lake Milnor, the deposits of which cover about commonly bouldery as a result of having associated beach deposits.
    [Show full text]
  • The Traverse County Comprehensive Local Water Plan
    TRAVERSE COUNTY WATER PLAN UPDATE January 1, 2005- December 31, 2014 Prepared by: Sara Gronfeld, Traverse County Water Plan Coordinator Assistance Provided by the Bois de Sioux Watershed District and Other Local and Regional Agencies TABLE OF CONTENTS ____Page Number Local Water Management Council..........................................3 Traverse County Commissioners...........................................3 A. Executive Summary ............................................................4 Introduction............................................................4 Purpose ..................................................................4 Summary of Goals and Actions .........................................4 Description of Priority Concerns .......................................5 Erosion ...................................................................4 Flood Damage........................................................5 Contaminated Runoff............................................5 Groundwater Contamination................................6 Consistency with Other Plans..............................6 Recommendations to Other Plans & Controls....7 B. Priority Concerns Assessment of Priority Concerns................................ 9-20 Assessment of Erosion.......................................10 Assessment of Flood Damage ...........................13 Assessment of Contaminated Runoff................16 Assessment of Groundwater Contamination....18 C. Goals, Objectives, and Action items ........................ 21-27 Action Items,
    [Show full text]
  • Geologic History of Minnesota Rivers
    GEOLOGIC HISTORY OF MINNESOTA RIVERS Minnesota Geological Survey Ed ucational Series - 7 Minnesota Geological Survey Priscilla C. Grew, Director Educational Series 7 GEOLOGIC HISTORY OF MINNESOTA RIVERS by H.E. Wright, Jr. Regents' Professor of Geology, Ecology, and Botany (Emeritus), University of Minnesota 'r J: \ I' , U " 1. L I!"> t) J' T II I ~ !oo J', t ' I' " I \ . University of Minnesota St. Paul, 1990 Cover: An early ponrayal of St. Anthony Falls on the Mississippi River In Minneapolis. The engraving of a drawing by Captain E. Eastman of Fan Snelling was first published In 1853; It Is here reproduced from the Second Final Report of the Geological and Natural History Survey of Minnesota, 1888. Several other early views of Minnesota rivers reproduced In this volume are from David Dale Owen's Report of a Geological Survey of Wisconsin, Iowa, and Minnesota; and Incidentally of a portion of Nebraska Territory, which was published In 1852 by Lippincott, Grambo & Company of Philadelphia. ISSN 0544-3083 1 The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age, veteran status, or sexual orientation. 1-' \ J. I,."l n 1 ~ r 1'11.1: I: I \ 1"" CONTENTS 1 .... INTRODUCTION 1. PREGLACIAL RIVERS 5 .... GLACIAL RIVERS 17 ... POSTGLACIAL RIVERS 19 . RIVER HISTORY AND FUTURE 20 . ... REFERENCES CITED iii GEOLOGIC HISTORY OF MINNESOTA RIVERS H.E. Wright, Jr. A GLANCE at a glacial map of the Great Lakes region (Fig. 1) reveals that all of Minnesota was glaciated at some time, and all but the southeastern and southwestern corners were covered by the last ice sheet, which culminated about 20,000 years ago.
    [Show full text]
  • Bottom Sediments and Organic Geochemical Residues of Some Minnesota Lakes
    MINNESOTA GEOLOGICAL SURVEY PRISCILLA C. GREW, Director BOTTOM SEDIMENTS AND ORGANIC GEOCHEMICAL RESIDUES OF SOME MINNESOTA LAKES EM. Swain Report of Investigations 41 ISSN 0076-9177 UNIVERSITY OF MINNESOTA Saint Paul - 1992 BOTTOM SEDIMENTS AND ORGANIC GEOCHEMICAL RESIDUES OF SOME MINNESOTA LAKES The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation. TABLE OF CONTENTS Page Foreword ........................................................................................ v Preface ........................................................................................... v Acknowledgments ............................... , ............................................. , v Abstract .......................................................................................... 1 Introduction .......................................... , .......................................... 2 Facies of Lake Sediments ...................................................................... 2 Clay Minerals .................................................................................. 42 Fossils ......................................................................................... 44 Carbohydrates ................................................................................. 44 Protein Amino Acids ........................................................................
    [Show full text]
  • MAP -FPJN9NTA== South Dakota Wetland Inventory U.S. Fish And
    South Dakota Wetland Inventory U.S . Fish and Wildlife Service 1:100,000 Map Narrative Report Milbank NE Pr-e- F)11~- (-C- +" 0 N-j MAP -FPJN9NTA== Contractor for this wetland inventory was the South Dakota Cooperative Fish and Wildlife Researt~ Unit, P .O . Box 2206, South Dakota State University, Brookirxgs, SD 57007 . Photointerpreters. were Howard Browers and Ross Blank-Libra . Preparation of this narrative report was ccupleted by Howard Browers . Regional Wetland Coordinator was Charles Elliott, U .S . Fish and Wildlife Service, Denver Federal Center, P.O. Box 25486, Denver, 00 80225 . Wetland delineation and classification for Milbank NE 1:100,000 quadrangle was done on 1 : 58, 000 color infrared aerial photographs taken in April and October 1984 . Photography covered 100% of the quadrangle . Classification of wetlands was done according to Cowardin et al . (1979) . National Wetlarxi Inventory Mapping Conventions were also used to assist in phatointerpretation. Field checking for the quadrangle was done on 4 and 5 April and 26 June 1988 . SPECIAL NAPPING PROBIEM Interpretation of this 1 :100,000 was originally to be done on NASA 1 :65,000 CIR. However, most (approximately 75%) of the NASA photos were taken in spring 1982 and exhibited depressed wetland conditions . The remaining 25% of the NASA was taken in spring 1979 and had nuch better wetland corx1itions . The NHAP used to replace the NASA was taken in spring and fall 1984 and generally had better wetland conditions. Both dates of NASA photos were used as collateral data while interpreting the NHAP . By using these photos as collateral data we were able to enhance the quality of the NHAP.
    [Show full text]
  • Section 5.0 Detailed Analysis of Little Minnesota River Floodway and Toelle Coulee Flood Mitigation Alternatives
    SECTION 5.0 DETAILED ANALYSIS OF LITTLE MINNESOTA RIVER FLOODWAY AND TOELLE COULEE FLOOD MITIGATION ALTERNATIVES 5.1 LITTLE MINNESOTA AND TOELLE COULEE ALTERNATIVES Based upon the information presented within Section 4.0, Range of Flood Mitigation Alternatives Considered, discussions with the BVFMTF, and consultation with the UMRWD, the range of Little Minnesota River flood mitigation alternatives became reduced to: 1) a Little Minnesota River floodway; and, 2) storage, a floodway, a levee or some combination thereof for Toelle Coulee. This section provides descriptions, detailed information on the engineering design, and an assessment of hydraulic performance for each of the flood mitigation alternatives selected for evaluation. Section 7 provides the rationale for selection of the preferred floodway alternatives for the Little Minnesota River and the design for Toelle Coulee. 5.1.1 Little Minnesota River Floodway Alternatives Six different alignments and two inlet types (i.e., gate-controlled or “active” and fixed crest or “passive”) for a total of twelve different floodway alternatives were considered for the Little Minnesota River to provide flood protection for the City of Browns Valley. Floodway Option 3 was added by Houston Engineering, Inc. subsequent to the November 1, 2007 BVFMTF meeting. Option 3 is intended to better address potential concerns relative to maintaining the historic proportion of flow to Lake Traverse and concerns about modifying low flows through the City of Browns Valley. All floodway designs focused on containing the design discharge (plus 1-foot of freeboard) within the floodway channel, rather than using levees to provide additional capacity. Material from floodway construction will be placed in spoil banks adjacent to the floodway and used to reconstruct Roberts CR 24.
    [Show full text]
  • Upper Minnesota River Watershed Five Year Strategic Plan
    UPPER MINNESOTA RIVER WATERSHED FIVE YEAR STRATEGIC PLAN In Cooperation With: East Dakota Water Development District South Dakota Conservation Districts South Dakota Association of Conservation Districts South Dakota Department of Environment and Natural Resources USDA Natural Resources Conservation Service Date: August 2012 Prepared by: TABLE OF CONTENTS Executive Summary ...........................................................................................................6 Introduction ........................................................................................................................8 1.1 Project Background and Scope ........................................................................8 1.2 Upper Minnesota River Watershed History ...................................................10 1.3 Upper Minnesota River Watershed Water Quality Studies ..........................13 1.4 Goals of the Upper Minnesota River Basin Project .......................................15 2.0 Causes and Sources of Impairment .......................................................................15 2.0.1 Geography, Soils, and Land Use....................................................................15 2.0.2 Water Bodies Studies and Current Status .....................................................24 2.1.0 Description of the Impairments for 303(d) Water Body Listings in the Upper Minnesota River Basin ............................................................29 2.1.1 Temperature ...................................................................................................29
    [Show full text]
  • Minnesota River Basin Trends
    Minnesota River Basin TRENDS Minnesota River near Redwood Falls by Brian Peterson, Star Tribune Star Brian Peterson, by Falls near Redwood Minnesota River Dear Reader This is the first Minnesota River Trends document. The purpose of this report is to provide a broad overview of trends related to the state of the Minnesota River. It is meant to be easy-to-read overview that summarizes some of the major demographic, land use, water quality, biological and recreational trends in the Minnesota River Basin over the past 10 to 100 years depending on data availability. In a few cases, where an analysis of change over time was not possible, the report includes information on current conditions. The indicators included in the following report were prioritized by a group of agency representatives and citizens with the hopes of providing some clues of broader ecosystem health across the Minnesota River Basin. What you will discover in this document is a mixed story—research shows some indicators improving, some declining, some static. We hope that this document will provide insight into this dynamic, complex and varied river basin. The river has been studied extensively and is managed by a number of different agencies and organizations for a variety of purposes. The report draws data from researchers across many diverse fields. Thanks to our many project cooperators (see list on back page). If you want to learn more, a rich resource list used to develop this report is available online http://mrbdc.mnsu.edu/mnbasin/trends As you will see, many actions and projects have been put in place to try to understand and improve the water quality across the basin.
    [Show full text]
  • Glacial Lake Agassiz
    THE GLAOIAL LAI{E AGASSIZ. By VYARREN PHAM. OHAP~rER I. INTRODUCTION. BASIN OF THE RED RIVER OF TIlE NORTH AND OF LAKE 'VINNIPEG. The glacial lake which i:; the theIne of this vohnne extended along the Reel River Valley and 'overed the lake country of ~Ianit ba. Its ~ituati o n in the center of th c ntir~ en t , and its geugraphic relation to the (h'ift­ covered area and to lakes Bonneville and Lahontan, are di, play,d in Plate II. Lake Agassiz wa~ the largest of the rnauy Pleistocene lakeM of North Alnerica, ~ome of 'which were fonned by the barrier )f the ice-sh'et during its reces. ion, whil otherB were pro hH~ ed by increased rainfall in the great w :,::;tern arid region that has no drainaO'e to the ea. Only a cOll1paratively , lnall fraction-about one-fifth-· -of the area f Lake Agassiz lies within the United States, but thi ~ inclu 1 s the greater portion f its exactly explore 1 shor -lines. A very large part of it~ ar -'a in Canada, besides a considerable tract within its linlits in northern :NIillne­ sota, i. covered by forest, which rnake ~ it impra'ticable tt. trace th re the beach ridges anel deltas, lowe 'carpnlellts of Tu,jon, antL other eviden es of thi~ lake :;0 continuously as has been done through the prairie reo'i n. This great expanse of prairie, upon which t.he ~hor -liiles have been et C "u­ rately and continuously lIlapped, eOlnprises the H ,d River ,ralle y and a (~joining higher lanu, and reaches north to tll.
    [Show full text]
  • Minnesota River Headwaters Watershed Characterization Report
    Minnesota River Headwaters Watershed Characterization Report MINNESOTA DEPARTMENT OF NATURAL RESOURCES DIVISION OF ECOLOGICAL AND WATER RESOURCES 1 2019 Contents List of Acronyms ............................................................................................................................................ 4 Table of Figures ............................................................................................................................................. 6 Table of Tables .............................................................................................................................................. 9 Executive Summary ..................................................................................................................................... 10 Introduction ................................................................................................................................................ 11 Watershed Characterization ................................................................................................................... 11 Geology ............................................................................................................................................... 12 High Value Resources .......................................................................................................................... 15 Rare Natural Features ......................................................................................................................... 16 Native
    [Show full text]
  • Traverse County Land Use Ordinance
    Zoning Ordinance TRAVERSE COUNTY LAND USE ORDINANCE AN ORDINANCE REGULATING THE USE OF LAND & WATER IN TRAVERSE COUNTY. THE TRAVERSE COUNTY BOARD ORDAINS IN ACCORDANCE WITH AUTHORITY GRANTED IN LAWS OF MINNESOTA CHAPTER 394 AS AMENDED, AS FOLLOWS: SECTION 1 TITLE 1.00 TITLE 1.00 Title. This Ordinance shall be known, cited and referred to as the Traverse County Land Use Ordinance and will be referred to herein as THIS ORDINANCE. 101707 C:\DOCUMENTS AND SETTINGS\SARA.GRONFELD\LOCAL SETTINGS\TEMPORARY INTERNET1 FILES\OLKB9\TRAVERSE COUNTY LAND USE ORDINANCE.DOC ISL Zoning Ordinance SECTION 2 INTENT AND PURPOSE 2.00 INTERPRETATION AND APPLICATION 2.01 Interpretation and Application. The provisions of this Ordinance shall be held to be minimum requirements and shall be liberally construed in favor of the Governing Body and shall not be deemed a limitation or repeal of any other powers granted by State Statutes and are adopted for the purpose of: 1. protecting the public health, safety, morals, comfort, convenience and general welfare. 2. protecting and preserving economically viable agricultural land. 3. promoting orderly development of the residential, commercial, industrial, recreational and public areas. 4. conserving the natural and scenic beauty and attractiveness of the county. 5. conserving and developing natural resources in the county. 6. providing for the compatibility of different land uses and the most appropriate use of land throughout the county. 7. minimizing environmental pollution. 2.02 Purpose of Adult Use Regulations. The purpose and intent of the adult use regulations set forth in this Ordinance is to serve a substantial government interest by attempting to preserve the quality and vitality of neighborhoods, curtail the depression of property values, restrain increased criminal activity and slow the spread of sexually transmitted diseases.
    [Show full text]