October 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dc Josephson Current Between an Isotropic and a D-Wave Or Extended S-Wave Partially Gapped Charge Density Wave Superconductor
Chapter 12 dc Josephson Current Between an Isotropic and a d-Wave or Extended s-Wave Partially Gapped Charge Density Wave Superconductor Alexander M. Gabovich, Suan Li Mai, Henryk Szymczak and Alexander I. Voitenko Additional information is available at the end of the chapter http://dx.doi.org/10.5772/46073 1. Introduction The discovery and further development of superconductivity is extremely interesting because of its pragmatic (practical) and purely academic reasons. At the same time, the superconductivity science is very remarkable as an important object for the study in the framework of the history and methodology of science, since all the details are well documented and well-known to the community because of numerous interviews by participants including main heroes of the research and the fierce race for higher critical temperatures of the superconducting transition, Tc. Moreover, the whole science has well-documented dates, starting from the epoch-making discovery of the superconducting transition by Heike Kamerlingh-Onnes in 1911 [1–7], although minor details of this and, unfortunately, certain subsequent discoveries in the field were obscured [8–11]. As an illustrative example of a senseless dispute on the priority, one can mention the controversy between the recognition of Bardeen-Cooper-Schrieffer (BCS) [12] and Bogoliubov [13] theories. If one looks beyond superconductivity, it is easy to find quite a number of controversies in different fields of science [14, 15]. Recent attempts [16–18] to contest and discredit the Nobel Committee decision on the discovery of graphene by Andre Geim and Kostya Novoselov [19, 20] are very typical. The reasons of a widespread disagreement concerning various scientific discoveries consist in a continuity of scientific research process and a tense competition between different groups, as happened at liquefying helium and other cryogenic gases [9, 21–24] and was reproduced in the course of studying graphite films [25, 26]. -
July 2007 (Volume 16, Number 7) Entire Issue
July 2007 Volume 16, No. 7 www.aps.org/publications/apsnews APS NEWS Election Preview A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY • WWW.apS.ORG/PUBLICATIONS/apSNEWS Pages 6-7 Executive Board Resolution Thanks US physics team trains for competition in Iran By Katherine McAlpine Legislators for Support of Science Twenty-four high school stu- The APS Executive Board bill authorizes nearly $60 billion dents comprising the US Phys- has passed a resolution thanking for various programs for FY 2008 ics Olympiad team vied for five House and Senate policy makers through FY 2011. The bill would places on the traveling team at for recently-passed legislation double the NSF budget over five the University of Maryland from that strengthens the science, math years and double the DOE Office May 22nd to June 1st. Those and engineering activities of our of Science budget over 10 years. chosen to travel will compete nation. The House of Representatives this month against teams from “Sustaining and improving the passed five separate authorization all over the world at Isfahan standard of living of American bills, which were then combined University of Technology in Is- citizens, achieving energy security into one bill, H.R. 2272, the 21st fahan, Iran. and environmental sustainability, Century Competitiveness Act of Over 3,100 US Physics Team providing the jobs of tomorrow 2007. The bill would put the NSF hopefuls took the preliminary and defending our nation against budget and the NIST Scientific examination in January, and 200 aggressors all require federal in- and Technical Research and Ser- were given a second exam in vestments in science education vices budget on track to double in March to determine the top 24 and research… The Board con- 10 years. -
Facts and Figures 2013
Facts and Figures 201 3 Contents The University 2 World ranking 4 Academic pedigree 6 Areas of impact 8 Research power 10 Spin-outs 12 Income 14 Students 16 Graduate careers 18 Alumni 20 Faculties and Schools 22 Staff 24 Estates investment 26 Visitor attractions 28 Widening participation 30 At a glance 32 1 The University of Manchester Our Strategic Vision 2020 states our mission: “By 2020, The University of Manchester will be one of the top 25 research universities in the world, where all students enjoy a rewarding educational and wider experience; known worldwide as a place where the highest academic values and educational innovation are cherished; where research prospers and makes a real difference; and where the fruits of scholarship resonate throughout society.” Our core goals 1 World-class research 2 Outstanding learning and student experience 3 Social responsibility 2 3 World ranking The quality of our teaching and the impact of our research are the cornerstones of our success. 5 The Shanghai Jiao Tong University UK Academic Ranking of World ranking Universities assesses the best teaching and research universities, and in 2012 we were ranked 40th in the world. 7 World European UK European Year Ranking Ranking Ranking ranking 2012 40 7 5 2010 44 9 5 2005 53 12 6 2004* 78* 24* 9* 40 Source: 2012 Shanghai Jiao Tong University World Academic Ranking of World Universities ranking *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 Academic pedigree Nobel laureates 1900 JJ Thomson , Physics (1906) We attract the highest calibre researchers and Ernest Rutherford , Chemistry (1908) teachers, boasting 25 Nobel Prize winners among 1910 William Lawrence Bragg , Physics (1915) current and former staff and students. -
The Struggle for Quantum Theory 47 5.1Aliensignals
Fundamental Forces of Nature The Story of Gauge Fields This page intentionally left blank Fundamental Forces of Nature The Story of Gauge Fields Kerson Huang Massachusetts Institute of Technology, USA World Scientific N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. FUNDAMENTAL FORCES OF NATURE The Story of Gauge Fields Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-270-644-7 ISBN-10 981-270-644-5 ISBN-13 978-981-270-645-4 (pbk) ISBN-10 981-270-645-3 (pbk) Printed in Singapore. -
M1757 Facts and Figures 2017.Indd
FACTS AND FIGURES 2017 CONTENTS 2 The University 20 Alumni 4 World ranking 22 Faculties and Schools 6 Academic pedigree 24 Staff 8 World-class research 26 Income 10 Innovation 28 Campus investment 12 Global challenges, 30 Making a diff erence Manchester solutions 32 Widening participation 14 Students 34 Public attractions 16 Stellify 36 At a glance 18 Graduate careers 1 THE UNIVERSITY 1 OF MANCHESTER WORLD-CLASS RESEARCH Our Manchester 2020 strategic plan states our mission: “By 2020 The University of Manchester will be a world-leading university recognised globally OUR COREOUTSTANDING GOALS for the excellence of its research, outstanding LEARNING AND 3 learning and student experience, and its STUDENT EXPERIENCE social, economic and cultural impact.” SOCIAL 2 RESPONSIBILITY 2 3 WORLD RANKING The quality of our teaching and the impact of our research are the cornerstones of our success. We have risen from 78th in 2004* to 35th in 2016 in the Academic Ranking of World Universities (ARWU). League table World ranking European ranking UK ranking ARWU 35 7 5 QS 29 9 7 Times Higher 35 7 5 55 15 8 Education WORLD EUROPE UK *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 John Cockcroft John Richard Hicks Economic Sciences Robert Robinson Physics (1951) Joseph E Stiglitz ACADEMIC PEDIGREE (1972) Economic Sciences (2001) Chemistry (1947) We attract the highest calibre researchers and Arthur Lewis teachers, with 25 Nobel Prize winners among CTR Wilson Walter Norman Economic Sciences Physics (1927) Arthur Harden (1979) Andre Geim our current and former staff and students. -
Advanced Information on the Nobel Prize in Physics, 5 October 2004
Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force. -
Intermission 2017
If people don’t have a good sense of humour, they are usually not very good scientists either. Andre Geim (Nobel Prize, 2010) You will always be lucky if you know how to make friends with strange cats. --ancient proverb Change is inevitable, except from a vending machine. Eagles may soar, but weasels don’t get sucked into jet engines. Chance favors the prepared mind. Louis Pasteur To escape criticism—do nothing, say nothing, be nothing. Elbert Hubbard Imagination is more important than knowledge. For knowledge is limited to all we know and understand, while imagination embraces the entire world, and all there ever will be to know and understand. Albert Einstein The only one who really likes change is a wet baby. The First Rule of Holes: When you are in one, stop digging. Never confuse motion with action. Ernest Hemingway Basic research is what I am doing when I don’t know what I am doing. Wernher von Braun Beer is a sign that God loves us and wants us to be happy. Benjamin Franklin From error to error, one discovers truth. Sigmund Freud You can’t always get what you want. But if you try sometime You just might find You get what you need. Mick Jagger Why do we park in driveways and drive on parkways?? Genius is 1 % inspiration and 99 % perspiration. Albert Einstein We must become the change we want to see. Gandhi The only difference between a rut and a grave is depth. Time flies like an arrow. Fruit flies like a banana. -
9. Reviving Russian Science and Academia
TATIANA GOUNKO 9. REVIVING RUSSIAN SCIENCE AND ACADEMIA In October 2010, the Royal Swedish Academy of Science announced the laureates of the Nobel Prize in physics. Andre Geim and Konstantin Novoselov jointly received this award for groundbreaking experiments regarding the two-dimensional material called graphene, which, according to science experts, will have a wide range of practical applications in the future. The research duo has been working together for over a decade. Born in 1974, Dr. Novoselov is the youngest scientist to be awarded the prestigious Nobel Prize since 1973. He first worked as a Ph.D. student with Dr. Andre Geim in the Netherlands and subsequently joined him in the United Kingdom. Both scientists are currently conducting their research at the University of Manchester. Needless to say, the University of Manchester administration expressed its delight with the news by calling the prize “a truly tremendous achievement” and “a testimony to the quality of research that is being carried out in Physics and more broadly across the University” (University of Manchester, 2010, p. 1). Most of the press releases and on-line publications devoted to the prize-winning duo briefly mentioned that Drs. Geim and Novoselov were Russian-trained researchers. Dr. Geim, who had received his doctorate at the age of 29 and worked for a number of years as a researcher at the Institute for Microelectronics Technology in Chernogolovka (Russia), left the country in 1994 to continue his research career in the Netherlands and later in the United Kingdom. Dr. Novoselov graduated from the Moscow Physical-Technical University in 1997 and joined Dr. -
The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number. -
November 2011 Volume 20, No.10 TM
November 2011 Volume 20, No.10 TM www.aps.org/publications/apsnews APS NEWS Focus on Northwest Section A PublicAtion of the AmericAn PhysicAl society • www.APs.org/PublicAtions/APsnews/index.cfm see page 6 Physical Review X Out of the Gate APS Helps Deconstruct the iPad on Capitol Hill The premier issue of Physical and exploring a physical model that By Mary Catherine Adams Review X, the new APS open ac- incorporates natural human-mobil- Congressional staffers gath- cess journal, hit the virtual news- ity patterns, challenges established ered at the Rayburn House Office stands on September 30th. PRX’s models for the spread of epidemics, Building in Washington on Sept. first twelve papers, in what will be and has, since its publication, re- 21 to learn about how basic sci- a quarterly journal, span a broad ceived attention in several national ence research was integral to the spectrum of fields and are all of media. Another paper comes from development of the iPad–a tool high scientific quality. Unlike other the area of electronic-devices re- many on Capitol Hill use daily. APS journals, which are mainly search, reporting the fabrication of In an effort to persuade Con- supported by subscription revenue, new nanowire-based electronic di- gress to invest in scientific re- PRX is supported by an article-pro- odes and demonstrating their ultra- search, the APS, participating cessing charge of $1500 for papers fast operating speeds and control- with the Task Force on American of less than 20 standard Physical lability. A third paper, also covered Innovation (TFAI) and several Review pages, with small incre- with a Synopsis in Physics, brings other organizations, hosted an mental charges for longer papers. -
Highlights of Modern Physics and Astrophysics
Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of -
Twenty Five Years of Asymptotic Freedom
TWENTY FIVE YEARS OF ASYMPTOTIC FREEDOM1 David J. Gross Institute For Theoretical Physics, UCSB Santa Barbara, California, USA e-mail: [email protected] Abstract On the occasion of the 25th anniversary of Asymptotic Freedom, celebrated at the QCD Euorconference 98 on Quantum Chrodynamics, Montpellier, July 1998, I described the discovery of Asymptotic Freedom and the emergence of QCD. 1 INTRODUCTION Science progresses in a much more muddled fashion than is often pictured in history books. This is especially true of theoretical physics, partly because history is written by the victorious. Con- sequently, historians of science often ignore the many alternate paths that people wandered down, the many false clues they followed, the many misconceptions they had. These alternate points of view are less clearly developed than the final theories, harder to understand and easier to forget, especially as these are viewed years later, when it all really does make sense. Thus reading history one rarely gets the feeling of the true nature of scientific development, in which the element of farce is as great as the element of triumph. arXiv:hep-th/9809060v1 10 Sep 1998 The emergence of QCD is a wonderful example of the evolution from farce to triumph. During a very short period, a transition occurred from experimental discovery and theoretical confusion to theoretical triumph and experimental confirmation. In trying to relate this story, one must be wary of the danger of the personal bias that occurs as one looks back in time. It is not totally possible to avoid this. Inevitably, one is fairer to oneself than to others, but one can try.