Material-Culture-Klamath-Modoc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water Allocation in the Klamath Reclamation Project (Oregon State
Oregon State University Extension Service Special Report 1037 December 2002 Water Allocation in the Klamath Reclamation Project, 2001: An Assessment of Natural Resource, Economic, Social, and Institutional Issues with a Focus on the Upper Klamath Basin William S. Braunworth, Jr. Assistant Extension Agriculture Program Leader Oregon State University Teresa Welch Publications Editor Oregon State University Ron Hathaway Extension agriculture faculty, Klamath County Oregon State University Authors William Boggess, department head, Department of William K. Jaeger, associate professor of agricul- Agricultural and Resource Economics, Oregon tural and resource economics and Extension State University agricultural and resource policy specialist, Oregon State University William S. Braunworth, Jr., assistant Extension agricultural program leader, Oregon State Robert L. Jarvis, professor of fisheries and University wildlife, Oregon State University Susan Burke, researcher, Department of Agricul- Denise Lach, codirector, Center for Water and tural and Resource Economics, Oregon State Environmental Sustainability, Oregon State University University Harry L. Carlson, superintendent/farm advisor, Kerry Locke, Extension agriculture faculty, University of California Intermountain Research Klamath County, Oregon State University and Extension Center Jeff Manning, graduate student, Department of Patty Case, Extension family and community Fisheries and Wildlife, Oregon State University development faculty, Klamath County, Oregon Reed Marbut, Oregon Water Resources -
Upper Klamath Basin, Tule Lake Subbasin • Groundwater Basin Number: 1-2.01 • County: Modoc, Siskiyou • Surface Area: 85,930 Acres (135 Square Miles)
North Coast Hydrologic Region California’s Groundwater Upper Klamath Groundwater Basin Bulletin 118 Upper Klamath Basin, Tule Lake Subbasin • Groundwater Basin Number: 1-2.01 • County: Modoc, Siskiyou • Surface Area: 85,930 acres (135 square miles) An important note on the status of the groundwater resources in the Tule Lake Subbasin, is that, historically, groundwater use in the basin has been relatively minor. Since about 1905, when the Bureau of Reclamation began building the Klamath Project to provide surface water to agriculture on reclaimed land in the Klamath Basin, abundant surface water supplies have been available. In the 2001 Klamath Project Operation, water requirements for two sucker fish species in the upper basin and the coho salmon in the lower basin led the USBR to reduce surface water deliveries to the farmers to 26 percent of normal. The already existing drought conditions were further exacerbated by the operational drought. In 2001, drought emergencies were declared for the Klamath Basin by the governors of both California and Oregon. Governor Davis called upon California’s legislature to fund an Emergency Well Drilling Program in the Tulelake Irrigation District (TID). The governor also requested funding for a Hydrogeologic Investigation to evaluate new and future groundwater development. The emergency measures were taken because the TID had no alternate water supply for the nearly 75,000 acres in the district and farmers were faced with economic disaster. Ten large-capacity irrigation wells were constructed within the irrigation district for the emergency program. Four of the ten wells produce 10,000 gpm and greater. The lowest yielding well produces 6,000 gpm. -
Effects of Chiloquin Dam on Spawning Distribution and Larval Emigration of Lost River, Shortnose, and Klamath Largescale Sucke
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 2013 Effects of Chiloquin Dam on Spawning Distribution and Larval Emigration of Lost River, Shortnose, and Klamath Largescale Suckers in the Williamson and Sprague Rivers, Oregon Barbara A. Martin U.S. Geological Survey, [email protected] David A. Hewitt U.S. Geological Survey Craig M. Ellsworth U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Geochemistry Commons, Geology Commons, Geomorphology Commons, Hydrology Commons, and the Other Earth Sciences Commons Martin, Barbara A.; Hewitt, David A.; and Ellsworth, Craig M., "Effects of Chiloquin Dam on Spawning Distribution and Larval Emigration of Lost River, Shortnose, and Klamath Largescale Suckers in the Williamson and Sprague Rivers, Oregon" (2013). Publications of the US Geological Survey. 117. https://digitalcommons.unl.edu/usgspubs/117 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Prepared in cooperation with the Bureau of Reclamation Effects of Chiloquin Dam on Spawning Distribution and Larval Emigration of Lost River, Shortnose, and Klamath Largescale Suckers in the Williamson and Sprague Rivers, Oregon Open-File Report 2013–1039 U.S. Department of the Interior U.S. Geological Survey Effects of Chiloquin Dam on Spawning Distribution and Larval Emigration of Lost River, Shortnose, and Klamath Largescale Suckers in the Williamson and Sprague Rivers, Oregon By Barbara A. -
Historical Evidence
Distribution of Anadromous Fishes in the Upper Klamath River Watershed Prior to Hydropower Dams— A Synthesis of the Historical Evidence fisheries history Knowledge of the historical distribution of anadromous fish is important to guide man- agement decisions regarding the Klamath River including ongoing restoration and regional recovery of coho salmon (Oncorhynchus kisutch). Using various sources, we determined the historical distribution of anadromous fish above Iron Gate Dam. feature Evidence for the largest, most utilized species, Chinook salmon (Oncorhynchus ABSTRACT tshawytscha), was available from multiple sources and clearly showed that this species historically migrated upstream into tributaries of Upper Klamath Lake. Available infor- mation indicates that the distribution of steelhead (Oncorhynchus mykiss) extended to the Klamath Upper Basin as well. Coho salmon and anadromous lamprey (Lampetra tri- dentata) likely were distributed upstream at least to the vicinity of Spencer Creek. A population of anadromous sockeye salmon (Oncorhynchus nerka) may have occurred historically above Iron Gate Dam. Green sturgeon (Acipenser medirostris), chum salmon (Oncorhynchus keta), pink salmon (Oncorhynchus gorbuscha), coastal cutthroat trout (Oncorhynchus clarki clarki), and eulachon (Thaleichthys pacificus) were restricted to the Klamath River well below Iron Gate Dam. This synthesis of available sources regard- ing the historical extent of these species’ upstream distribution provides key information necessary to guide management and habitat restoration efforts. Introduction John B. Hamilton Gary L. Curtis Gatschet’s statement is that salmon ascend the Klamath river twice a year, in June and again in autumn. This is in agreement with my information, that the run comes in the middlefinger Scott M. Snedaker month [sic], May–June, and that the large fish run in the fall...They ascend all the rivers David K. -
A Habitat Management Alternative for Tule Lake National Wildlife Refuge
FARM/WETLAND ROTATIONAL MANAGEMENT - A HABITAT MANAGEMENT ALTERNATIVE FOR TULE LAKE NATIONAL WILDLIFE REFUGE INTRODUCTION Tule Lake National Wildlife Refuge (NWR) is located in extreme Northern California in Modoc and Siskiyou Counties approximately 6 miles west of the town of Tulelake, California.The refuge is one of 6 refuges within the Klamath Basin NWR complex. Historic Tule Lake fluctuated widely from >100,000 acres (1890) to 53,000 acres (1846) (Abney 1964).Record highs and lows for the lake were undoubtably greater before written records were kept. High water marks on surrounding cliffs indicate levels 12 feet higher than the 1890 records (Abney 1964).These extremes of water level were the key to maintaining the high aquatic productivity of this ecosystem.The historic lake was bounded on the north and west by vast expanses of tule marshes which supported tremendous populations of colonial nesting waterbirds and summer resident and migratory waterfowl. In 1905, the states of Oregon and California ceded to the United States the lands under both Tule and Lower Klamath lakes.In that same year, the Bureau of Reclamation (BOR) tiled Notice of Intention to utilize all unappropriated waters of the Klamath Basin (Pafford 1971) and ultimately the Klamath Project was approved.As part of the Klamath Project, the Clear Lake dam was completed in 19 10 and the Lost River diversion was completed in 1912. The Clear Lake dam was intended to store water in the Lost River basin for irrigation and the Lost River Diversion routed water directly to the Klamath River thus removing the major source of water to Tule Lake.As a result to these actions, Tule Lake receded in size. -
Siskiyou County Museums Brochure
MUSEUMS OF SISKIYOU COUNTY CALIFORNIA Siskiyou County Museum Butte Valley Museum 910 Main Street, 500 Butte Street Yreka, Calif. 96097 Dorris, Calif. 96023 (530) 842-3836 (530) 397-2707 www.siskiyoucountyhistoricalsociety.org buttevalleymuseum.homestead.com Open: Year Round Open: Seasonal The People’s Center WWII Valor in the Pacifi c The Karuk Tribe National Monument 64236 Second Avenue 800 South Main Street Happy Camp, Calif. 96039 Tulelake, Calif. 96134 (530) 493-1600 Ext 2202 (530) 260-0537 Hilt ��� www.karuk.us/peoples center/peoples center.php Dorris www.nps.gov/labe Open: Year Round Tulelake Open: Year Round Klamath Hornbrook River Seiad �� ��� Valley Tulelake Museum Fort Jones Museum Happy Macdoel 11913 Main Street Hamburg of Local History Camp 800 South Main Street Fort Jones, Calif. 96032 Scott Bar �� � Tulelake, Calif. 96134 (530) 468-5568 Yreka Montague www. (530) 667-5312 Open: Memorial Day to Labor Day �� www.tbvfair.com Open: Year Round Fort Jones Tennant Etna Museum � Eschscholtzia Parlor No. 112 Klamath Basin NWR Native Daughters of the Golden West Etna Visitor Center 520 Main Street Weed 4009 Hill Road Somes Bar Etna, Calif. 96027 Sawyers Tulelake, Calif. 96134 (530) 467-5366 Bar Mt. Shasta (530) 667-2231 www.etnamuseum.org Forks Callahan www.fws.gov/klamathbasinrefuges/ of Salmon McCloud Open: June through August �� Open: Year Round Dunsmuir Weed Historic Cecilville Lava Beds Lumber Town Museum �� � 303 Gilman Avenue National Monument Weed, Calif. 96094 1 Indian Well Headquarters (530) 938-0550 Tulelake, Calif. 96134 www.snowcrest.net/whm (530) 667-8100 Open: Last week of May to 30 September www.nps.gov/labe Open: Year Round Sisson Museum Dunsmuir Railroad Depot Museum Heritage Junction of McCloud Montague Depot Museum 1 North Old Stage Road Pine Street and Sacramento Avenue 320 Main Street 230 South 11th Street Mount Shasta, Calif. -
Upper Klamath and Lost River Subbasins TMDL and Water Quality Management Plan
Upper Klamath and Lost River Subbasins TMDL and Water Quality Management Plan April 2017 TMDL Program 700 NE Multnomah St. Suite 600 Portland, OR 97232 Phone: 541-273-7002 Contact: Mike Hiatt www.oregon.gov/DEQ DEQ is a leader in restoring, maintaining and enhancing the quality of Oregon’s air, land and water. Oregon Department of Environmental Quality This report prepared by: Oregon Department of Environmental Quality 700 NE Multnomah St, Suite 600 Portland, OR 97232 541-273-7002 www.oregon.gov/deq Contact: Mike Hiatt [email protected] Documents can be provided upon request in an alternate format for individuals with disabilities or in a language other than English for people with limited English skills. To request a document in another format or language, call DEQ in Portland at 503-229-5696, or toll-free in Oregon at 1-800-452-4011, ext. 5696; or email [email protected]. State of Oregon Department of Environmental Quality ii Table of Contents Executive Summary................................................................................................................................... 1 Klamath River TMDLs................................................................................................................................ 2 Lost River TMDLs ...................................................................................................................................... 2 TMDL Summaries ..................................................................................................................................... -
Sources Dicken, S
Tules By Frank A. Lang In Oregon and much of the western United States, tule is the common name for two species of emergent plants that grow in shallow water of marshes, muddy shores, and lakes. These sedges (family Cyperaceae) are named hard-stemmed (Schoenoplectus acutus var. occidentalis) and soft-stemmed (S. tabernaemontani) bulrushes. Tule, a Spanish name, is based on tollin, of Nahurtl Native American lingustic stock, meaning a rush. Older botanical literature places these bulrushes in Scirpus, a closely related genus with various species names attached. Tule, the basis of the name of the Klamath basin town of Tulelake in northern California, was named after the extensive shallow Tule Lake (not to be confused with ancient Lake Tulare in the Great Valley of California). Present-day Tule Lake is the remainder of Pluvial Lake Modoc, which filled the Klamath Basin during the Pleistocene. As climates changed, ancient Lake Modoc shrank, forming Upper and Lower Klamath Lakes and Tule Lake. Irrigation projects reduced the lakes to their present size. Oregonians are probably most familiar with the extensive marshes on the margins and in the shallows of the great interior Klamath Lakes and Marsh and Malheur lakes. The tall (three- to six-foot), round, green stems are topped with clusters of brown, seed-producing spikelets of flowers. This contrasts with the cattail (Typha latifolia, family Typhaceae), another common emergent aquatic plant with flat leaves and characteristic flower clusters at the end of a leafless round shoot. Tule bulrushes arise from an extensive rhizome system that forms vegetative mats with cattails and other graminoids (grasses and grass-like plants, including other sedges and rushes). -
A Study to Determine the Feasibility of Establishing Salmon and Steelhead in the Upper Klamath Basin
A STUDY TO DETERMINE THE FEASIBILITY OF ESTABLISHING SALMON AND STEELHEAD IN THE UPPER KLAMATH BASIN JOHN D. FORTUNE, JR. ARTHUR R. GERLACH C. J. HANEL A STUDY TO DETER?II:JE THE FEASIBILITY OF ESTAHLISHING SALMON AND SEELllEAD IX THE UPPER KLMTH BAS IN April, 1966 John D. Fortune, Jr. and Arthur R. Gerlach, Oregon State Game Conmission and C. J. fiancl, Pacific Power & Light Company STEERING COPiMITTEE MEMBERSHIP Robert Puckett Attorney at Law, Klamath Falls, Oregon Bruce B. Cannady Bureau of Sport Fisheries and Wildlife George 0. Black Bureau of Commercial Fisheries John E. Skinner California Department of Fish and Game T. Eugene Kruse Fish Commission of Oregon Charles J. Campbell Oregon Stare Game Commission J. A. R. Hamilton Pacific Parer L Light Company Tam OF CONTENTS PAGE INTRODlJCTI ON DESCRIPTION OF STUDY AREA Physical Climatology HISTORY OF KLANATH RIVER SALMON AND STEELHEAD Published Reports Archeological investigations County his tory Newspaper reports Biological investigations Miscellaneous reports Personal Interviews Fish Counts for Rlamath River LIFE HISTORY OF KLAMATH RIVER SALWON UD STEELHEAD Salmon Upstream migration Spawning Downstream migration Age at rnaturiry St eelhead ENVIRONMENTAL REOUIREMENTS OF SALMON AND STEELHEAD Temperature Dissolved Oxygen Water Velocity for Spawning Water Depth for Spawning Gravel Quality Migration Schedules SURVEY RESULTS AND EVALUATION Survey Ekrhods Lower Klamath River Iron Gate Reservoir Jenny Creek Copco No. 2 Dam Copco No. 1 Reservoir Shovel Creek Klamath River from Copco Reservoir to J. C. Doyle Dam J. C. Boyle Dam and Reservoir Spencer Creek Klamath River to Old Needle Dam at Keno Klamath River from Keno to Klamath Falls Link River Upper Klarnath Lake West Side Tributaries Fourmile Creek and Crane Creek Sevenmile Creek SURVEY RESULTS AND EVALUATION (cont .) lJood River Williamson River Spring Creek Sprague River to Lone Pine Sprague River from Lone Pine to the Forks South Fork of Sprague River North Fork of Sprague River Tributaries of Sprague River Sycan River Five Hile and Meryl. -
Water Quality Conditions on the Williamson River Delta, Oregon
2008- 2012 Water Quality Conditions on the Williamson River Delta, Oregon: Five Years Post-Restoration Natanya Hayden and Heather Hendrixson The Nature Conservancy Klamath Basin Field Office 226 Pine Street Klamath Falls OR 97601 2008-2012 Contents EXECUTIVE SUMMARY ......................................................................................................................................... 1 INTRODUCTION ....................................................................................................................................................... 4 STUDY AREA ............................................................................................................................................................. 7 RESTORATION BACKGROUND .................................................................................................................................... 7 HYDROLOGY .............................................................................................................................................................. 7 VEGETATION AND SOILS ............................................................................................................................................ 8 METHODS ................................................................................................................................................................... 9 STUDY DESIGN AND SAMPLING LOCATIONS .............................................................................................................. 9 -
Natural Flow of the Upper Klamath River
Natural Flow of the Upper Klamath River U.S. Department of the Interior Bureau of Reclamation November 2005 Mission Statements The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Cover photo by J. Rasmussen— McCornac Point Marsh Natural Flow of the Upper Klamath River—Phase I Natural inflow to, natural losses from, and natural outfall of Upper Klamath Lake to the Link River and the Klamath River at Keno prepared by Technical Service Center Water Resources Services Thomas Perry, Hydrologist Amy Lieb, Hydrologist Alan Harrison, Environmental Engineer Mark Spears, P.E., Hydraulic Engineer Ty Mull, Agricultural Engineer Concrete Dams and Waterways Elisabeth Cohen, P.E., Hydraulic Engineer Klamath Basin Area Office John Rasmussen, Hydrologist Jon Hicks, Water Conservation Specialist TSC Project Management Del Holz, Manager Joe Lyons, Assistant Manager prepared for U.S. Department of the Interior Bureau of Reclamation Klamath Basin Area Office Klamath Falls, Oregon November 2005 Base map and study area. Preface This study was undertaken to estimate the effects of agricultural development on natural flows in the Upper Klamath River Basin. A large body of data was reviewed and analyzed to obtain the results included in this assessment of the natural hydrology of the Basin. Within this report, the term natural represents typical flows without agricultural development in the basin. -
10.0 Screening Level Determination of Chemical Contaminants in Fish Tissue in Selected Project Reservoirs
10.0 SCREENING LEVEL DETERMINATION OF CHEMICAL CONTAMINANTS IN FISH TISSUE IN SELECTED PROJECT RESERVOIRS 10.1 DESCRIPTION AND PURPOSE Past activities in and around Lake Ewauna and other locations in Keno reservoir suggest that sediments in the reservoir may be contaminated with agricultural chemical residue, poly- chlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), and trace metals including mercury. While it is unknown whether the Klamath Hydroelectric Project has contributed to the potential sources of sediment contaminants, it is possible that accumulation of potentially contaminated sediments in Project reservoirs has resulted in conditions conducive to bioaccumulation of such contaminants. Both Oregon1 and California2 have water quality standards concerning bioaccumulation of toxic substances. Therefore, the water quality agencies of both states requested that studies be done to determine whether bioaccumulation of potentially toxic contaminants was occurring. The purpose of this study was to determine if edible fish in the Project reservoirs contain unaccept- ably high residues of potentially toxic contaminants. 10.2 OBJECTIVE This study is intended to be a Tier I (screening level) study of the Project reservoirs. The primary aim of the study was to identify whether certain fish species are bioaccumulating toxic substances at levels that may adversely affect public health or wildlife via fish consumption, or be harmful to aquatic life (based on existing quality criteria/guidelines for the protection of human health, wildlife, and aquatic life). Locations were sampled where fishing is practiced, including areas where various types of fishing are conducted routinely (e.g., from a pier, from shore, or from private and commercial boats), thereby exposing a significant number of people to potentially adverse health effects.