4Étale Algebras, Norm and Trace, Dedekind Extensions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APPLICATIONS of GALOIS THEORY 1. Finite Fields Let F Be a Finite Field
CHAPTER IX APPLICATIONS OF GALOIS THEORY 1. Finite Fields Let F be a finite field. It is necessarily of nonzero characteristic p and its prime field is the field with p r elements Fp.SinceFis a vector space over Fp,itmusthaveq=p elements where r =[F :Fp]. More generally, if E ⊇ F are both finite, then E has qd elements where d =[E:F]. As we mentioned earlier, the multiplicative group F ∗ of F is cyclic (because it is a finite subgroup of the multiplicative group of a field), and clearly its order is q − 1. Hence each non-zero element of F is a root of the polynomial Xq−1 − 1. Since 0 is the only root of the polynomial X, it follows that the q elements of F are roots of the polynomial Xq − X = X(Xq−1 − 1). Hence, that polynomial is separable and F consists of the set of its roots. (You can also see that it must be separable by finding its derivative which is −1.) We q may now conclude that the finite field F is the splitting field over Fp of the separable polynomial X − X where q = |F |. In particular, it is unique up to isomorphism. We have proved the first part of the following result. Proposition. Let p be a prime. For each q = pr, there is a unique (up to isomorphism) finite field F with |F | = q. Proof. We have already proved the uniqueness. Suppose q = pr, and consider the polynomial Xq − X ∈ Fp[X]. As mentioned above Df(X)=−1sof(X) cannot have any repeated roots in any extension, i.e. -
Ring Extension Problem, Shukla Cohomology and Ann-Category Theory the Relationship Between Ring Extension Problem in the General Case and Ann- Category Theory
RING EXTENSION PROBLEM, SHUKLA COHOMOLOGY AND ANN-CATEGORY THEORY Nguyen Tien Quang and Nguyen Thu Thuy November 4, 2018 Abstract. Every ring extension of A by R induces a pair of group ho- ∗ ∗ momorphisms L : R → EndZ(A)/L(A); R : R → EndZ(A)/R(A), preserving multiplication, satisfying some certain conditions. A such 4-tuple (R, A, L∗, R∗) is called a ring pre-extension. Each ring pre-extension induces a R-bimodule structure on bicenter KA of ring A, and induces an obstruction k, which is a 3-cocycle of Z-algebra R, with coefficients in R-bimodule KA in the sense of Shukla. Each obstruction k in this sense induces a structure of a regular Ann-category of type (R,KA). This result gives us the first application of Ann- category in extension problems of algebraic structures, as well as in cohomology theories. 1 Introduction Group extension problem has been presented with group of automorphisms Aut(G) and quotient group Aut(G)/In(G) by group of inner automorphisms. For ring extension problem, Mac Lane [1] has replaced the above groups by the ring of bimultiplications MA and the quotient ring PA of MA upon ring of in- ner bimultiplications. Besides, Maclane has replaced commutative, associative laws for addition in ring R by commutative-associative law (u + v) + (r + s)= arXiv:0706.0315v1 [math.CT] 3 Jun 2007 (u+r)+(v+s) and therefore proved that each obstruction of ring extension prob- lem is an element of 3-dimensional cohomology group in the sense of Maclane, and the number of solutions corresponds to 2-dimensional cohomology group of ring under a bijection. -
Isomorphic Groups and Group Rings
Pacific Journal of Mathematics ISOMORPHIC GROUPS AND GROUP RINGS DONALD STEVEN PASSMAN Vol. 15, No. 2 October 1965 PACIFIC JOURNAL OF MATHEMATICS Vol. 15, No. 2, 1965 ISOMORPHIC GROUPS AND GROUP RINGS D. S. PASSMAN Let © be a finite group, £ a commutative ring with one and S[@] the group ring of © over S. If ξ> is a group with © = £ then clearly S[(S] = S[£>] where the latter is an S-iso- morphism. We study here the converse question: For which groups © and rings S does £[©] ^ S[ξ>] imply that © is iso- morphic to £)? We consider first the case where S = K is a field. It is known that if © is abelian then Q[@] = Q[ξ>] implies that © = §> where Q is the field of rational numbers. We show here that this result does not extend to all groups ©. In fact by a simple counting argument we exhibit a large set of noniso- morphic p-groups with isomorphic group algebras over all noncharacteristic p fields. Thus for groups in general the only fields if interest are those whose characteristic divides the order of the group. We now let S = R be the ring of integers in some finite algebraic extension of the rationale. We show here that the group ring R[@>] determines the set of normal subgroups of © along with many of the natural operations defined on this set. For example, under the assumption that © is nilpotent, we show that given normal subgroups 3Dΐ and 9ΐ, the group ring determines the commutator subgroup (3JI, 91). Finally we consider several special cases. In particular we show that if © is nilpotent of class 2 then R[(g\ = β[§] implies © = €>. -
1 Spring 2002 – Galois Theory
1 Spring 2002 – Galois Theory Problem 1.1. Let F7 be the field with 7 elements and let L be the splitting field of the 171 polynomial X − 1 = 0 over F7. Determine the degree of L over F7, explaining carefully the principles underlying your computation. Solution: Note that 73 = 49 · 7 = 343, so × 342 [x ∈ (F73 ) ] =⇒ [x − 1 = 0], × since (F73 ) is a multiplicative group of order 342. Also, F73 contains all the roots of x342 − 1 = 0 since the number of roots of a polynomial cannot exceed its degree (by the Division Algorithm). Next note that 171 · 2 = 342, so [x171 − 1 = 0] ⇒ [x171 = 1] ⇒ [x342 − 1 = 0]. 171 This implies that all the roots of X − 1 are contained in F73 and so L ⊂ F73 since L can 171 be obtained from F7 by adjoining all the roots of X − 1. We therefore have F73 ——L——F7 | {z } 3 and so L = F73 or L = F7 since 3 = [F73 : F7] = [F73 : L][L : F7] is prime. Next if × 2 171 × α ∈ (F73 ) , then α is a root of X − 1. Also, (F73 ) is cyclic and hence isomorphic to 2 Z73 = {0, 1, 2,..., 342}, so the map α 7→ α on F73 has an image of size bigger than 7: 2α = 2β ⇔ 2(α − β) = 0 in Z73 ⇔ α − β = 171. 171 We therefore conclude that X − 1 has more than 7 distinct roots and hence L = F73 . • Splitting Field: A splitting field of a polynomial f ∈ K[x](K a field) is an extension L of K such that f decomposes into linear factors in L[x] and L is generated over K by the roots of f. -
Section X.51. Separable Extensions
X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F . -
Math 210B. Inseparable Extensions Since the Theory of Non-Separable Algebraic Extensions Is Only Non-Trivial in Positive Charact
Math 210B. Inseparable extensions Since the theory of non-separable algebraic extensions is only non-trivial in positive characteristic, for this handout we shall assume all fields have positive characteristic p. 1. Separable and inseparable degree Let K=k be a finite extension, and k0=k the separable closure of k in K, so K=k0 is purely inseparable. 0 This yields two refinements of the field degree: the separable degree [K : k]s := [k : k] and the inseparable 0 degree [K : k]i := [K : k ] (so their product is [K : k], and [K : k]i is always a p-power). pn Example 1.1. Suppose K = k(a), and f 2 k[x] is the minimal polynomial of a. Then we have f = fsep(x ) pn where fsep 2 k[x] is separable irreducible over k, and a is a root of fsep (so the monic irreducible fsep is n n the minimal polynomial of ap over k). Thus, we get a tower K=k(ap )=k whose lower layer is separable and n upper layer is purely inseparable (as K = k(a)!). Hence, K=k(ap ) has no subextension that is a nontrivial n separable extension of k0 (why not?), so k0 = k(ap ), which is to say 0 pn [k(a): k]s = [k : k] = [k(a ): k] = deg fsep; 0 0 n [k(a): k]i = [K : k ] = [K : k]=[k : k] = (deg f)=(deg fsep) = p : If one tries to prove directly that the separable and inseparable degrees are multiplicative in towers just from the definitions, one runs into the problem that in general one cannot move all inseparability to the \bottom" of a finite extension (in contrast with the separability). -
11. Counting Automorphisms Definition 11.1. Let L/K Be a Field
11. Counting Automorphisms Definition 11.1. Let L=K be a field extension. An automorphism of L=K is simply an automorphism of L which fixes K. Here, when we say that φ fixes K, we mean that the restriction of φ to K is the identity, that is, φ extends the identity; in other words we require that φ fixes every point of K and not just the whole subset. Definition-Lemma 11.2. Let L=K be a field extension. The Galois group of L=K, denoted Gal(L=K), is the subgroup of the set of all functions from L to L, which are automorphisms over K. Proof. The only thing to prove is that the composition and inverse of an automorphism over K is an automorphism, which is left as an easy exercise to the reader. The key issue is to establish that the Galois group has enough ele- ments. Proposition 11.3. Let L=K be a finite normal extension and let M be an intermediary field. TFAE (1) M=K is normal. (2) For every automorphism φ of L=K, φ(M) ⊂ M. (3) For every automorphism φ of L=K, φ(M) = M. Proof. Suppose (1) holds. Let φ be any automorphism of L=K. Pick α 2 M and set φ(α) = β. Then β is a root of the minimum polynomial m of α. As M=K is normal, and α is a root of m(x), m(x) splits in M. In particular β 2 M. Thus (1) implies (2). -
Trivial Ring Extension of Suitable-Like Conditions and Some
An - Najah Univ. J. Res.(N. Sc.) Vol. 33(1), 2019 Trivial Ring Extension of Suitable-Like Conditions and some properties AmÌ'@ ªK.ð AîEAîD J.ð éJ¯A¾JÖÏ@ HA ®ÊjÊË éJ îE YJ.Ë@ éJ ®ÊmÌ'@ H@YK YÒJË@ Khalid Adarbeh* éK.P@Y« YËAg Department of Mathematics, Faculty of Sciences, An-Najah National University, Nablus, Palestine * Corresponding Author: [email protected] Received: (6/9/2018), Accepted: (6/12/2018) Abstract We investigate the transfer of the notion of suitable rings along with re- lated concepts, such as potent and semipotent rings, in the general context of the trivial ring extension, then we put these results in use to enrich the literature with new illustrative and counter examples subject to these ring- theoretic notions. Also we discuss some basic properties of the mentioned notions. Keywords: Trivial ring extension, idealization, clean ring, potent ring, semipotent ring, von Neumann regular ring, suitable rings. jÊÓ Ì « ªK. ð éJ¯A¾ÖÏ@ HA®Êm '@ Ðñê®Ó ÈA®JK@ éJ ÊÔ PñÖÏ@@Yë ú ¯ Ij.K Ì Ì áÓ éÓAªË@ éËAm '@ ú ¯ éK ñ®Ë@ éJ. ð éK ñ®Ë@ HA®Êm '@ ú ×ñê®Ò» é¢J.KQÖÏ@ Õæ ëA®ÖÏ@ YK ðQ K ú¯ èYK Ym.Ì'@ l.'AJJË@ ÐYjJ Õç' áÓð , éJ îE YJ.Ë@ éJ ®ÊmÌ'@ H@YK YÒJË@ ªK . ¯AJ K AÒ» . éðPYÖÏ@ ÕæëA®ÒÊË © m' éJ j ñ K éÊJÓAK . HA«ñJ .¢ÖÏ@ .Õæ ëA®ÖÏ@ èYêË éJ ®ÊmÌ'@ AmÌ'@ , é®J ¢ JË@ é®ÊmÌ'@ , éJ ËAJÖ ÏAK. ÉÒªË@ , éJ îE YJ.Ë@ éJ ®ÊmÌ'@ H@YK YÒJË@ : éJ kAJ®ÖÏ@ HAÒʾË@ . -
494 Lecture: Splitting Fields and the Primitive Element Theorem
494 Lecture: Splitting fields and the primitive element theorem Ben Gould March 30, 2018 1 Splitting Fields We saw previously that for any field F and (let's say irreducible) polynomial f 2 F [x], that there is some extension K=F such that f splits over K, i.e. all of the roots of f lie in K. We consider such extensions in depth now. Definition 1.1. For F a field and f 2 F [x], we say that an extension K=F is a splitting field for f provided that • f splits completely over K, i.e. f(x) = (x − a1) ··· (x − ar) for ai 2 K, and • K is generated by the roots of f: K = F (a1; :::; ar). The second statement implies that for each β 2 K there is a polynomial p 2 F [x] such that p(a1; :::; ar) = β; in general such a polynomial is not unique (since the ai are algebraic over F ). When F contains Q, it is clear that the splitting field for f is unique (up to isomorphism of fields). In higher characteristic, one needs to construct the splitting field abstractly. A similar uniqueness result can be obtained. Proposition 1.2. Three things about splitting fields. 1. If K=L=F is a tower of fields such that K is the splitting field for some f 2 F [x], K is also the splitting field of f when considered in K[x]. 2. Every polynomial over any field (!) admits a splitting field. 3. A splitting field is a finite extension of the base field, and every finite extension is contained in a splitting field. -
Commutative Algebra
Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions . -
Math 200B Winter 2021 Final –With Selected Solutions
MATH 200B WINTER 2021 FINAL {WITH SELECTED SOLUTIONS 1. Let F be a field. Let A 2 Mn(F ). Let f = minpolyF (A) 2 F [x]. (a). Let F be the algebraic closure of F . Show that minpolyF (A) = f. (b). Show that A is diagonalizable over F (that is, A is similar in Mn(F ) to a diagonal matrix) if and only if f is a separable polynomial. 2 3 1 1 1 6 7 (c). Let A = 41 1 15 2 M3(F ). Is A diagonalizable over F ? The answer may depend 1 1 1 on the properties of F . Most students did well on this problem. For those that missed part (a), the key is to use that the minpoly is the largest invariant factor, and that invariant factors are unchanged by base field extension (since the rational canonical form must be the same regardless of the field). There is no obvious way to part (a) directly. 2. Let F ⊆ K be a field extension with [K : F ] < 1. In this problem, if you find any results from homework problems helpful you can quote them here rather than redoing them. Note that a commutative ring R is called reduced if R has no nonzero nilpotent elements. (a). Suppose that K=F is separable. Prove that the K-algebra K ⊗F K is reduced, but is not a domain unless K = F . (b). Suppose that K=F is inseparable. Show that the K-algebra K ⊗F K is not reduced. Proof. (a). Since K=F is separable, K = F (α) for some α 2 K, by the theorem of the primitive element. -
Proquest Dissertations
University of Alberta Descent Constructions for Central Extensions of Infinite Dimensional Lie Algebras by Jie Sun A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Department of Mathematical and Statistical Sciences Edmonton, Alberta Spring 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre rSterence ISBN: 978-0-494-55620-7 Our file Notre rGterence ISBN: 978-0-494-55620-7 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre im primes ou autrement printed or otherwise reproduced reproduits sans son autorisation.