Proquest Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ring Extension Problem, Shukla Cohomology and Ann-Category Theory the Relationship Between Ring Extension Problem in the General Case and Ann- Category Theory
RING EXTENSION PROBLEM, SHUKLA COHOMOLOGY AND ANN-CATEGORY THEORY Nguyen Tien Quang and Nguyen Thu Thuy November 4, 2018 Abstract. Every ring extension of A by R induces a pair of group ho- ∗ ∗ momorphisms L : R → EndZ(A)/L(A); R : R → EndZ(A)/R(A), preserving multiplication, satisfying some certain conditions. A such 4-tuple (R, A, L∗, R∗) is called a ring pre-extension. Each ring pre-extension induces a R-bimodule structure on bicenter KA of ring A, and induces an obstruction k, which is a 3-cocycle of Z-algebra R, with coefficients in R-bimodule KA in the sense of Shukla. Each obstruction k in this sense induces a structure of a regular Ann-category of type (R,KA). This result gives us the first application of Ann- category in extension problems of algebraic structures, as well as in cohomology theories. 1 Introduction Group extension problem has been presented with group of automorphisms Aut(G) and quotient group Aut(G)/In(G) by group of inner automorphisms. For ring extension problem, Mac Lane [1] has replaced the above groups by the ring of bimultiplications MA and the quotient ring PA of MA upon ring of in- ner bimultiplications. Besides, Maclane has replaced commutative, associative laws for addition in ring R by commutative-associative law (u + v) + (r + s)= arXiv:0706.0315v1 [math.CT] 3 Jun 2007 (u+r)+(v+s) and therefore proved that each obstruction of ring extension prob- lem is an element of 3-dimensional cohomology group in the sense of Maclane, and the number of solutions corresponds to 2-dimensional cohomology group of ring under a bijection. -
Isomorphic Groups and Group Rings
Pacific Journal of Mathematics ISOMORPHIC GROUPS AND GROUP RINGS DONALD STEVEN PASSMAN Vol. 15, No. 2 October 1965 PACIFIC JOURNAL OF MATHEMATICS Vol. 15, No. 2, 1965 ISOMORPHIC GROUPS AND GROUP RINGS D. S. PASSMAN Let © be a finite group, £ a commutative ring with one and S[@] the group ring of © over S. If ξ> is a group with © = £ then clearly S[(S] = S[£>] where the latter is an S-iso- morphism. We study here the converse question: For which groups © and rings S does £[©] ^ S[ξ>] imply that © is iso- morphic to £)? We consider first the case where S = K is a field. It is known that if © is abelian then Q[@] = Q[ξ>] implies that © = §> where Q is the field of rational numbers. We show here that this result does not extend to all groups ©. In fact by a simple counting argument we exhibit a large set of noniso- morphic p-groups with isomorphic group algebras over all noncharacteristic p fields. Thus for groups in general the only fields if interest are those whose characteristic divides the order of the group. We now let S = R be the ring of integers in some finite algebraic extension of the rationale. We show here that the group ring R[@>] determines the set of normal subgroups of © along with many of the natural operations defined on this set. For example, under the assumption that © is nilpotent, we show that given normal subgroups 3Dΐ and 9ΐ, the group ring determines the commutator subgroup (3JI, 91). Finally we consider several special cases. In particular we show that if © is nilpotent of class 2 then R[(g\ = β[§] implies © = €>. -
Kac-Moody Algebras and Applications
Kac-Moody Algebras and Applications Owen Barrett December 24, 2014 Abstract This article is an introduction to the theory of Kac-Moody algebras: their genesis, their con- struction, basic theorems concerning them, and some of their applications. We first record some of the classical theory, since the Kac-Moody construction generalizes the theory of simple finite-dimensional Lie algebras in a closely analogous way. We then introduce the construction and properties of Kac-Moody algebras with an eye to drawing natural connec- tions to the classical theory. Last, we discuss some physical applications of Kac-Moody alge- bras,includingtheSugawaraandVirosorocosetconstructions,whicharebasictoconformal field theory. Contents 1 Introduction2 2 Finite-dimensional Lie algebras3 2.1 Nilpotency.....................................3 2.2 Solvability.....................................4 2.3 Semisimplicity...................................4 2.4 Root systems....................................5 2.4.1 Symmetries................................5 2.4.2 The Weyl group..............................6 2.4.3 Bases...................................6 2.4.4 The Cartan matrix.............................7 2.4.5 Irreducibility...............................7 2.4.6 Complex root systems...........................7 2.5 The structure of semisimple Lie algebras.....................7 2.5.1 Cartan subalgebras............................8 2.5.2 Decomposition of g ............................8 2.5.3 Existence and uniqueness.........................8 2.6 Linear representations of complex semisimple Lie algebras...........9 2.6.1 Weights and primitive elements.....................9 2.7 Irreducible modules with a highest weight....................9 2.8 Finite-dimensional modules............................ 10 3 Kac-Moody algebras 10 3.1 Basic definitions.................................. 10 3.1.1 Construction of the auxiliary Lie algebra................. 11 3.1.2 Construction of the Kac-Moody algebra................. 12 3.1.3 Root space of the Kac-Moody algebra g(A) .............. -
Trivial Ring Extension of Suitable-Like Conditions and Some
An - Najah Univ. J. Res.(N. Sc.) Vol. 33(1), 2019 Trivial Ring Extension of Suitable-Like Conditions and some properties AmÌ'@ ªK.ð AîEAîD J.ð éJ¯A¾JÖÏ@ HA ®ÊjÊË éJ îE YJ.Ë@ éJ ®ÊmÌ'@ H@YK YÒJË@ Khalid Adarbeh* éK.P@Y« YËAg Department of Mathematics, Faculty of Sciences, An-Najah National University, Nablus, Palestine * Corresponding Author: [email protected] Received: (6/9/2018), Accepted: (6/12/2018) Abstract We investigate the transfer of the notion of suitable rings along with re- lated concepts, such as potent and semipotent rings, in the general context of the trivial ring extension, then we put these results in use to enrich the literature with new illustrative and counter examples subject to these ring- theoretic notions. Also we discuss some basic properties of the mentioned notions. Keywords: Trivial ring extension, idealization, clean ring, potent ring, semipotent ring, von Neumann regular ring, suitable rings. jÊÓ Ì « ªK. ð éJ¯A¾ÖÏ@ HA®Êm '@ Ðñê®Ó ÈA®JK@ éJ ÊÔ PñÖÏ@@Yë ú ¯ Ij.K Ì Ì áÓ éÓAªË@ éËAm '@ ú ¯ éK ñ®Ë@ éJ. ð éK ñ®Ë@ HA®Êm '@ ú ×ñê®Ò» é¢J.KQÖÏ@ Õæ ëA®ÖÏ@ YK ðQ K ú¯ èYK Ym.Ì'@ l.'AJJË@ ÐYjJ Õç' áÓð , éJ îE YJ.Ë@ éJ ®ÊmÌ'@ H@YK YÒJË@ ªK . ¯AJ K AÒ» . éðPYÖÏ@ ÕæëA®ÒÊË © m' éJ j ñ K éÊJÓAK . HA«ñJ .¢ÖÏ@ .Õæ ëA®ÖÏ@ èYêË éJ ®ÊmÌ'@ AmÌ'@ , é®J ¢ JË@ é®ÊmÌ'@ , éJ ËAJÖ ÏAK. ÉÒªË@ , éJ îE YJ.Ë@ éJ ®ÊmÌ'@ H@YK YÒJË@ : éJ kAJ®ÖÏ@ HAÒʾË@ . -
Commutative Algebra
Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions . -
Modular Forms and Affine Lie Algebras
Modular Forms Theta functions Comparison with the Weyl denominator Modular Forms and Affine Lie Algebras Daniel Bump F TF i 2πi=3 e SF Modular Forms Theta functions Comparison with the Weyl denominator The plan of this course This course will cover the representation theory of a class of Lie algebras called affine Lie algebras. But they are a special case of a more general class of infinite-dimensional Lie algebras called Kac-Moody Lie algebras. Both classes were discovered in the 1970’s, independently by Victor Kac and Robert Moody. Kac at least was motivated by mathematical physics. Most of the material we will cover is in Kac’ book Infinite-dimensional Lie algebras which you should be able to access on-line through the Stanford libraries. In this class we will develop general Kac-Moody theory before specializing to the affine case. Our goal in this first part will be Kac’ generalization of the Weyl character formula to certain infinite-dimensional representations of infinite-dimensional Lie algebras. Modular Forms Theta functions Comparison with the Weyl denominator Affine Lie algebras and modular forms The Kac-Moody theory includes finite-dimensional simple Lie algebras, and many infinite-dimensional classes. The best understood Kac-Moody Lie algebras are the affine Lie algebras and after we have developed the Kac-Moody theory in general we will specialize to the affine case. We will see that the characters of affine Lie algebras are modular forms. We will not reach this topic until later in the course so in today’s introductory lecture we will talk a little about modular forms, without giving complete proofs, to show where we are headed. -
Notes on Commutative Algebra
Notes on Commutative Algebra Dan Segal February 2015 1 Preliminary definitions etc. Rings: commutative, with identity, usually written 1 or 1R. Ring homomor- phisms are assumed to map 1 to 1. A subring is assumed to have the same identity element. Usually R will denote an arbitrary ring (in this sense). Polynomial rings I will always use t, t1,...,tn to denote independent indeterminates. Thus R[t] is the ring of polynomials in one variable over R, R[t1,...,tn] is the ring of polynomials in n variables over R, etc. The most important property of these rings is the ‘universal property’, which will frequently be used without special explanation: • Given any ring homomorphism f : R → S and elements s1,...,sn ∈ S, ∗ there exists a unique ring homomorphism f : R[t1,...,tn] → S such that ∗ ∗ f (r)= f(r) ∀r ∈ R and f (ti)= si for i = 1,...,n. Modules An R-module is an abelian group M together with an action of R on M. This means: for each r ∈ R, a −→ ar (a ∈ M) is an endomorphism of the abelian group M (i.e. a homomorphism from M to itself), and moreover this assignment gives a ring homomorphism from R into EndZ(M), the ring of all additive endomorphisms of M. In practical terms this means: for all a, b ∈ M and all r, s ∈ R we have (a + b)r = ar + br a1= a a(r + s)= ar + as a(rs)=(ar)s. 1 (Here M is a right R-module; similarly one has left R-modules, but over a commutative ring these are really the same thing.) A submodule of M is an additive subgroup N such that a ∈ N, r ∈ R =⇒ ar ∈ N. -
Mathematics People
people.qxp 10/18/95 11:55 AM Page 1543 Mathematics People Kac and Moody Receive Biography of Victor Kac Victor Kac was born on December 19, 1943, in Bugurus- Wigner Medal lan, USSR. He received his bachelor’s and master’s degrees (both in 1965) and his doctorate (1968) from Moscow State At the 20th Colloquium on Group Theoretical Methods in University. He was Physics, held in July 1994 in Osaka, Japan, Victor Kac of on the faculty of the Massachusetts Institute of Technology and Robert the Moscow Insti- Moody of the University of Alberta were named co-win- tute of Electronic ners of the Wigner Medal. Engineering from Though they did not work together, Kac and Moody in- 1968 to 1976. In dependently and simultaneously began in 1967 a series of 1977, he went to papers developing the theory of a new class of infinite-di- the Massachusetts mensional Lie algebras. Since then, the most important class Institute of Tech- nology, where he of such algebras has been called “Kac-Moody algebras”. is currently pro- “This was quite an event, because here was a whole new fessor of math- class of Lie algebras,” notes Morton Hamermesh, profes- ematics. Professor sor emeritus of physics at the University of Minnesota and Kac has presented a member of the committee awarding the medal. “It caught lectures in confer- the imagination of physicists because there are so many ences around the ways it could be applied to physics.” world, including An overview of the impact of Kac-Moody algebras on the following: In- physics—particularly particle physics, field theory, and ternational Con- string theory—is given in the article by L. -
Extensions of a Ring by a Ring with a Bimodule Structure
EXTENSIONS OF A RING BY A RING WITH A BIMODULE STRUCTURE CARL W. KOHLS Abstract. A type of ring extension is considered that was intro- duced by J. Szendrei and generalizes many familiar examples, including the complex extension of the real field. We give a method for constructing a large class of examples of this type of extension, and show that for some rings all possible examples are obtained by this method. An abstract characterization of the extension is also given, among rings defined on the set product of two given rings. This paper is a sequel to [2 ], in which a class of examples was given of a type of ring extension defined in terms of two functions. Here we exhibit some other functions that may be used to construct such extensions, and show that in certain cases (in particular, when the first ring is an integral domain and the second is a commutative ring with identity), the functions must have a prescribed form. We also characterize this type of ring extension, which Szendrei defined di- rectly by the ring operations, in terms of the manner in which the two given rings are embedded in the extension. The reader is referred to [2] for background. Only the basic defini- tion is repeated here. Let A and B be rings. We define the ring A*B to be the direct sum of A and B as additive groups, with multiplication given by (1) (a,b)(c,d) = (ac+ {b,d},aad + b<rc+ bd), where a is a homomorphism from A onto a ring of permutable bimul- tiplications of B, and { •, • } is a biadditive function from BXB into A satisfying the equations (2) bo-{c,d) = o-[b.c)d, (3) {b,cd\ = {bc,d\, (4) {b,aac\ = {baa,c\, (5) \o-ab,c} = a{b,c}, and {&,c<ra} = \b,c\a, for all a£^4 and all b, c, dEB. -
Uniquely Separable Extensions
UNIQUELY SEPARABLE EXTENSIONS LARS KADISON Abstract. The separability tensor element of a separable extension of noncommutative rings is an idempotent when viewed in the correct en- domorphism ring; so one speaks of a separability idempotent, as one usually does for separable algebras. It is proven that this idempotent is full if and only the H-depth is 1 (H-separable extension). Similarly, a split extension has a bimodule projection; this idempotent is full if and only if the ring extension has depth 1 (centrally projective exten- sion). Separable and split extensions have separability idempotents and bimodule projections in 1 - 1 correspondence via an endomorphism ring theorem in Section 3. If the separable idempotent is unique, then the separable extension is called uniquely separable. A Frobenius extension with invertible E-index is uniquely separable if the centralizer equals the center of the over-ring. It is also shown that a uniquely separable extension of semisimple complex algebras with invertible E-index has depth 1. Earlier group-theoretic results are recovered and related to depth 1. The dual notion, uniquely split extension, only occurs trivially for finite group algebra extensions over complex numbers. 1. Introduction and Preliminaries The classical notion of separable algebra is one of a semisimple algebra that remains semisimple under every base field extension. The approach of Hochschild to Wedderburn’s theory of associative algebras in the Annals was cohomological, and characterized a separable k-algebra A by having a e op separability idempotent in A = A⊗k A . A separable extension of noncom- mutative rings is characterized similarly by possessing separability elements in [13]: separable extensions are shown to be left and right semisimple exten- arXiv:1808.04808v3 [math.RA] 29 Aug 2019 sions in terms of Hochschild’s relative homological algebra (1956). -
4Étale Algebras, Norm and Trace
18.785 Number theory I Fall 2019 Lecture #4 09/16/2019 4 Etale´ algebras, norm and trace 4.1 Separability In this section we briefly review some standard facts about separable and inseparable field extensions that we will use repeatedly throughout the course. Those familiar with this material should feel free to skim it. In this section K denotes any field, K is an algebraic closure that we will typically choose to contain any extensions L=K under consideration, P i 0 P i−1 and for any polynomial f = aix 2 K[x] we use f := iaix to denote the formal derivative of f (this definition also applies when K is an arbitrary ring). Definition 4.1. A polynomial f in K[x] is separable if (f; f 0) = (1), that is, gcd(f; f 0) is a unit in K[x]. Otherwise f is inseparable. If f is separable then it splits into distinct linear factors over over K, where it has deg f distinct roots; this is sometimes used as an alternative definition. Note that the proper of separability is intrinsic to the polynomial f, it does not depend on the field we are working in; in particular, if L=K is any field extension whether or not a polynomial in f 2 K[x] ⊆ L[x] does not depend on whether we view f as an element of K[x] or L[x]. Warning 4.2. Older texts (such as Bourbaki) define a polynomial in K[x] to be separable if all of its irreducible factors are separable (under our definition); so (x − 1)2 is separable under this older definition, but not under ours. -
SECOND COHOMOLOGY of Aff(1) ACTING on N-ARY DIFFERENTIAL OPERATORS
Bull. Korean Math. Soc. 56 (2019), No. 1, pp. 13{22 https://doi.org/10.4134/BKMS.b170774 pISSN: 1015-8634 / eISSN: 2234-3016 SECOND COHOMOLOGY OF aff(1) ACTING ON n-ARY DIFFERENTIAL OPERATORS Imed Basdouri, Ammar Derbali, and Soumaya Saidi Abstract. We compute the second cohomology of the affine Lie algebra n aff(1) on the dimensional real space with coefficients in the space Dλ,µ of n-ary linear differential operators acting on weighted densities where λ = (λ1; : : : ; λn). We explicitly give 2-cocycles spanning these cohomology. 1. Introduction In mathematical deformation theory one studies how an object in a certain category of spaces can be varied in dependence on the points of a parameter space. In other words, deformation theory thus deals with the structure of families of objects like varieties, singularities, vector bundles, coherent sheaves, algebras or differentiable maps. Deformation problems appear in various areas of mathematics, in particular in algebra, algebraic and analytic geometry, and mathematical physics. Cohomology is a useful tool in Poisson Geometry, plays an important role in Deformation and Quantization Theory, and attracts more and more interest among algebraists. In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations.