Real-Time Collision Detection Algorithm for Humanoid Robots

Total Page:16

File Type:pdf, Size:1020Kb

Real-Time Collision Detection Algorithm for Humanoid Robots University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2020-01-29 Real-time Collision Detection Algorithm for Humanoid Robots Moghaddasi, Shadi Moghaddasi, S. (2020). Real-time Collision Detection Algorithm for Humanoid Robots (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/111593 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Real-time Collision Detection Algorithm for Humanoid Robots by Shadi Moghaddasi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN MECHANICAL ENGINEERING CALGARY, ALBERTA JANUARY, 2020 c Shadi Moghaddasi 2020 Abstract Humanoid robots (humanoids) are highly capable of assisting humans and working with them in cluttered and confined environments. However, they are not completely ready to work in close proximity with humans while not risking the safety of themselves and the objects and people around them. Current methods have not been fully successful in preparing humanoid for safe Human Robot Interaction (HRI) because they rely on expensive and fragile equipment, and erroneous techniques. This thesis presents a novel real-time methodology that enables the safe close proximity HRI for all types of humanoids (controlling systems, etc.). The proposed approach employs signals from robots' motor joints and data from the computers running the robot to develop a collision detection algorithm. Using this algorithm, humanoids will be able to speedily identify impacted joints during a collision. Experimental results for the humanoid robot Taiko are presented to demonstrate the applicability of the proposed approach. ii Preface This thesis is an original work by the author. No part of this thesis has been previously published. iii Acknowledgements I would like to thank the people who helped me to brainstorms ideas, find annoying bugs and review the thesis. First and foremost thanks to Dr. Alejandro Ramirez-Serrano for always supporting me, believing in me and guiding me with his amazing suggestions and comments. Then I would like to thank my lab-mates: Ashraf, Parastoo, and Marshall for all the insightful discussions that helped me to gain progress. I would also want to thank my friends who are always there for me. Last but certainly not least, my father, mother, and sister to always encourage me to do my best and guide me in difficult situations. Very special thanks to Erfan without whom, the challenges associated with this work would have not been manageable. iv To all the knowledge I have gained ... v Table of Contents Abstract ii Preface iii Acknowledgements iv Dedication v Table of Contents vi List of Figures and Illustrations viii List of Tables ix List of Symbols, Abbreviations and Nomenclature x 1 Introduction 1 1.1 Motivation . .4 1.2 Thesis Focus . .7 1.3 Thesis Outline . .8 2 Literature and Review 9 2.1 Balanced Walking . 10 2.1.1 Wheeled Walking. 11 2.1.2 Pedal walking. 14 2.1.2.1 Bipedal (Biped) Walking. 14 2.1.2.2 Beyond just Balanced Walking. 19 2.2 Manipulation + Walking . 22 2.3 Touching Sensibility . 24 2.4 Safety of a Humanoid Robot . 26 3 Problem Statement 29 3.1 Definitions . 31 3.2 Assumptions . 33 3.3 Constraints . 34 3.4 The Inefficiencies in the Current Techniques . 34 vi 3.5 Proposed Solution . 35 3.6 Expectations of the Proposed Solution and Contributions . 37 4 Operation Architecture 38 4.1 Perception Layer . 38 4.2 Signal Analysis Mechanism . 39 4.2.1 Signal Storing Process. 40 4.2.2 Dynamic Filtering the Stored Signals. 42 4.2.3 Replacing Outliers with Modified Data. 43 4.2.4 Processing Filtered and Stored values. 44 4.2.4.1 1st Condition Data Processing. 44 4.2.4.2 2nd Condition Data Processing. 44 4.2.4.3 3rd Condition Data Processing. 46 4.3 Collision Detection Mechanism . 46 4.4 Operation Architecture Summary . 51 5 Experimental Humanoid Robot Characteristics 52 5.1 Humanoid Robot Specifications . 52 5.2 Experimental Implementation . 56 5.3 Remarks . 58 6 Experimental Results 61 6.1 Experimental testing Set-up . 61 6.2 Motor's Torque Dynamic Filtering . 62 6.3 Storing Period Validation . 64 6.4 Humanoid's Real-time Collision Detection Results . 71 6.4.1 Collisions on Low Power Joints. 71 6.4.2 Collisions on 100-Watt Power Joints. 73 6.4.3 Collisions on 200-Watt Power Joints. 75 6.4.4 Complex Robot Motions and Multiple Collision Tests. 76 6.5 Discussion . 78 7 Conclusions 80 7.1 Future Work . 82 Bibliography 83 vii List of Figures and Illustrations 1.1 (a) Humanoid Robot NAO and (b) Wheeled Humanoid Robot Justin. .3 3.1 Operation Architecture. 35 4.1 Evaluation Layer. 41 4.2 Robotic joints sensed torque values for two 200 W and a 100 W Dynamixel Pro motors. 42 4.3 Identification Layer. 47 4.4 Graphical demonstration of the final step of the collision detection. 51 5.1 Dr. Alejandro Ramirez-Serrano standing next to the Humanoid Robot Taiko. 53 5.2 (a) Taiko physical specifications, (b) Front view, and (c) Side view. 54 5.3 Schematic diagram of the humanoid's hardware architecture. 58 5.4 Taiko's joint ID map. 59 5.5 Stanley 51-104 rubber mallet. 60 6.1 Using collision detection mechanism on Joint ID 29 using different values of Ws.......................................... 64 6.2 Collision Detection on joint ID 28 and Outlier Filtering using m = 10. 66 6.3 Results of the Final Detection Matrix for various values of m for joint ID 28. 67 6.4 Affected joints for the experiment of different values of \m". 68 6.5 Collision Detection on joint ID 28and Outlier Filtering using m=20. 69 6.6 Collision Detection on joint ID 28and Outlier Filtering using m=50. 69 viii List of Tables 5.1 Control Table for the 200-Watt motors (Dynamixel H54-200-S500-R). 55 5.2 Control Table for the 100-Watt motors (Dynamixel H54-100-S500-R). 55 5.3 Control Table for the 20-Watt motors (Dynamixel H42-20-S300-R). 56 6.1 Estimated impact force applied to the humanoid robot. 71 6.2 Collision detection on the humanoid's 20 W servomotor joints. 72 6.3 Real-time collision detection of Taiko's 100 W servomotor joints. 74 6.4 Real-time collision detection of Taiko's 200 W servomotor joints. 77 6.5 Real-time collision detection of Taiko's servomotor joints in idle state. 78 6.6 Real-time collision detection of Taiko's servomotor joints in moving state. 79 ix List of Symbols, Abbreviations and Nomenclature Acronyms Acronyms Definition ANN Artificial Neural Network ATV All Terrain Vehicles CoM Center of Mass Defense Advanced Research Projects DARPA Agency DoF Degree(s) of Freedom DPC Development Personal Computer GIWC Gravito-Inertial Wrench Cone GPU Graphics Processing Unit HD High-Definition HRI Human Robot Interaction ID Identifier IMU Inertial Measurement Unit ISS International Space Station LIPM Linear Inverted Pendulum Model x MAD Median Absolute Deviation MIT Massachusetts Institute of Technology MPC Motion Personal Computer National Aeronautics and Space NASA Administration OPC Operating Personal Computer PPC Perception Personal Computer PSF Plane Segment Finder PWM Pulse Width Modulation RGB Red Green Blue RMP Robotic Mobility Platform ROS Robotic Operating System W Watts Functions Definition d difference between two values, sets, or matrices erfc−1 Inverse Complementary Error Function MAM difference between Maximum and Minimum values Matrices Definition DJIDj Detected Joints' ID for jth Condition (j=1, 2, and 3) Detected Joints' Current Readings for jth DJ cj Condition (j=1, 2, and 3) DMCj Detection Matrix for jth Condition (j=1, 2, and 3) Vector of the Difference between desired and dP i current values of Position for Joint "i" xi Maximum Difference between desired dP max i and current values of Position for Joint "i" Vector of the Difference between desired and dV i current values of Velocity for Joint "i" Maximum Difference between desired max dVi and current values of Velocity for Joint "i" Vector of the Difference between desired and dτ i current values of Torque for Joint "i" Maximum Difference between desired dτ max i and current values of Torque for Joint "i" FDJID Final Detected Joints' ID F DJc Final Detected Joints' current readings FDM Final Detection Matrix difference between Max and Minimum values for MAMP ci current stored Position values for Joint "i" difference between Maximum and Minimum values for MAMV ci current stored Velocity values for Joint "i" difference between Maximum and Minimum values for MAMτ ci current stored Torque values for Joint "i" Vector of the Slopes between Modified Torque Desired Sτ^ cii Values for Joint "i" max Maximum Slopes between Modified Torque Sτ^ ci Desired Values for Joint "i" Scalars Definition Ws Window Size ∆t Storing Period δt Control Cycle δtm Iteration "m" Control Cycle xii Error Sets Definition Pcii Vector of the Stored Current Values of Position for Joint "i" Pdii Vector of the Stored Desired Values of Position for Joint "i" S Vector of Set of Values sp Vector of Position Sub-set sv Vector of Velocity Sub-set sτ Vector of Torque Sub-set Vcii Vector of the Stored Current Values of Velocity for Joint "i" Vdii Vector of the Stored Desired Values of Velocity for Joint "i" τcii Vector of the Stored Current Values of Torque for Joint "i" τdii Vector of the Stored Desired Values of Torque for Joint "i" τ^cii Vector of the Stored Modified Torque Current Value for Joint "i" Set Members Definition P m di Position Desired Value at iteration "m" for Joint "i" V m Velocity Desired Value at iteration "m" for Joint "i" di τ k Detected Torque Outlier Values ci τ m Torque Desired Value at iteration "m" for Joint "i" di τ^m Modified Current Torque Value at iteration "m" for Joint "i" ci xiii Chapter 1 Introduction Human beings have been dreaming of trustworthy strong human-alike companionable ma- chines for more than a century [1].
Recommended publications
  • Artificial Intelligence: Soon to Be the World’S Greatest Intelligence, Or Just a Wild Dream? Edward R
    Johnson & Wales University ScholarsArchive@JWU Academic Symposium of Undergraduate College of Arts & Sciences Scholarship 3-22-2010 Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream? Edward R. Kollett Johnson & Wales University - Providence, [email protected] Follow this and additional works at: https://scholarsarchive.jwu.edu/ac_symposium Part of the Artificial Intelligence and Robotics Commons, Arts and Humanities Commons, Nanoscience and Nanotechnology Commons, and the Social and Behavioral Sciences Commons Repository Citation Kollett, Edward R., "Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream?" (2010). Academic Symposium of Undergraduate Scholarship. 3. https://scholarsarchive.jwu.edu/ac_symposium/3 This Research Paper is brought to you for free and open access by the College of Arts & Sciences at ScholarsArchive@JWU. It has been accepted for inclusion in Academic Symposium of Undergraduate Scholarship by an authorized administrator of ScholarsArchive@JWU. For more information, please contact [email protected]. Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream? Edward Kollett Johnson & Wales University Honors Program 2009 Edward Kollett, Page 2 Artificial Intelligence is a term, coined by John McCarthy in 1956, that “in its broadest sense would indicate the ability of an artifact to perform the same kinds of functions that characterize human thought processes” (“Artificial Intelligence”). Typically, it is used today to refer to a computer program that is trying to simulate the human brain, or at least parts of it. Attempts to recreate the human brain have been a goal of mankind for centuries, but only recently, as computers have become as powerful as they are now, does the goal of a fully automated robot with human intelligence and emotional capabilities seems to be within reach.
    [Show full text]
  • Humanoid Robots – from Fiction to Reality?
    KI-Zeitschrift, 4/08, pp. 5-9, December 2008 Humanoid Robots { From Fiction to Reality? Sven Behnke Humanoid robots have been fascinating people ever since the invention of robots. They are the embodiment of artificial intelligence. While in science fiction, human-like robots act autonomously in complex human-populated environments, in reality, the capabilities of humanoid robots are quite limited. This article reviews the history of humanoid robots, discusses the state-of-the-art and speculates about future developments in the field. 1 Introduction 1495 Leonardo da Vinci designed and possibly built a mechan- ical device that looked like an armored knight. It was designed Humanoid robots, robots with an anthropomorphic body plan to sit up, wave its arms, and move its head via a flexible neck and human-like senses, are enjoying increasing popularity as re- while opening and closing its jaw. By the eighteenth century, search tool. More and more groups worldwide work on issues like elaborate mechanical dolls were able to write short phrases, play bipedal locomotion, dexterous manipulation, audio-visual per- musical instruments, and perform other simple, life-like acts. ception, human-robot interaction, adaptive control, and learn- In 1921 the word robot was coined by Karel Capek in its ing, targeted for the application in humanoid robots. theatre play: R.U.R. (Rossum's Universal Robots). The me- These efforts are motivated by the vision to create a new chanical servant in the play had a humanoid appearance. The kind of tool: robots that work in close cooperation with hu- first humanoid robot to appear in the movies was Maria in the mans in the same environment that we designed to suit our film Metropolis (Fritz Lang, 1926).
    [Show full text]
  • Robonaut 2 Fact Sheet
    National Aeronautics and Space Administration Robonaut 2 facts NASA Almost 200 people from 15 countries have visited the International Space Station, but the orbiting complex has only had human crew members – until now. Robonaut 2, the latest generation of the Robonaut astronaut helpers, launched to the space station aboard space shuttle Discovery on the STS-133 mission in February 2011. It is the fi rst humanoid robot in space, and although its primary job for now is demonstrating to engineers how dexterous robots behave in space, the hope is that, through upgrades and advancements, it could one day venture outside the station to help spacewalkers make repairs or additions to the station or perform scientifi c work. R2, as the robot is called, was unpacked in April and powered up for the first time in August. Though it is currently being tested inside the Destiny laboratory, over time both its territory and its applications could expand. Initial tasks identified for R2 include velocity air measurements and handrail cleaning, both of which are simple but necessary tasks that require a great deal of crew time. R2 also has a taskboard on which to practice flipping switches and pushing buttons. Over time, the robot should graduate to more complex tasks. There are no plans to return R2 to Earth. History Work on the first Robonaut began in 1997. The idea was to build a humanoid robot that could assist astronauts on tasks in which another pair of hands would be helpful or to venture forth to perform jobs either too dangerous for crew members to risk or too mundane for them to spend time on.
    [Show full text]
  • Talk with a Robot
    Talk With A Robot With its small, portable, travel size, kids and adults will love to bring it around to play with. Type a custom snippet or try one of the examples. Though, it was an improvement over the depressing white/black, its charm wore out pretty quickly. © 2014 Steve Worswick. “When the robot was active, people tended to respond and give feedback to whatever the robot was doing, saying ‘Wow!’, ‘Good job. Python 100. Typically, a chat bot communicates with a real person, but applications are being developed in which two chat bots can communicate with each other. We started with some of the key features. Human Robot Intelligent That Can Talk Dance Sing Watch Home Smart Humanoid Robot For Kids Education , Find Complete Details about Human Robot Intelligent That Can Talk Dance Sing Watch Home Smart Humanoid Robot For Kids Education,Human Robot Intelligent,Human Robots,Robots That Can Talk from Toy Robots Supplier or Manufacturer-Shenzhen Yuanhexuan Industrial Co. Another communication method I want to talk about is XMLRPC, which stands for XML-formatted Remote Procedure Call. The bots have hammers attached to micro servos that they use to hit targets on the other robot. Two human look-a-like robots invented by Japanese engineers. Unemployment. The site Cleverbot. Choose a material for your robot. Typically, a chat bot communicates with a real person, but applications are being developed in which two chat bots can communicate with each other. Slideshow ( 2 images ). Type a custom snippet or try one of the examples. In this week’s Tech Talk podcast: Brian Stelter discusses recent hacks on major Web sites and the author of a new book on robots discusses what is to come.
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • Robonaut 2 – Operations on the International Space Station
    Robonaut 2 – Operations on the International Space Station Ron Diftler Robonaut Project Lead Software, Robotics and Simulation Division NASA/Johnson Space Center [email protected] 2/14/2013 Overview Robonaut Motivation GM Relationship Robonaut Evolution Robonaut 2 (R2) Capabilities Preparing for ISS Journey to Space On Board ISS Future Activities Spinoffs Robonaut Motivation Capable Tool for Crew • Before, during and after activities Share EVA Tools and Workspaces. • Human Like Design Increase IVA and EVA Efficiency • Worksite Setup/Tear Down • Robotic Assistant • Contingency Roles Surface Operations • Near Earth Objects • Moon/Mars Interplanetary Vehicles Astronaut Nancy Currie works with 2 Robonauts to build a truss structure during an Telescopes experiment. Robonaut Development History 1998 • Subsystem Development • Testing of hand mechanism ROBONAUT 1999 Fall 1998 • Single Arm Integration • Testing with teleoperator ROBONAUT 2000 Fall 1999 • Dual Arm Integration • Testing with dual arm control ROBONAUT 2001 Fall 2000 • Waist and Vision Integration • Testing under autonomous control 2002 ROBONAUT • R1A Testing of Autonomous Learning Fall 2001 • R1B Integration 2003 ROBONAUT • R1A Testing Multi Agent EVA Team Fall 2002 • R1B Segwanaut Integration 2004 ROBONAUT Fall 2003 • R1A Autonomous Manipulation • R1B 0g Airbearing Development 2005 ROBONAUT Fall 2004 • DTO Flight Audit • Begin Development of R1C ROBONAUT 2006 Fall 2006 • Centaur base • Coordinated field demonstration GM’s Motivation Why did GM originally come to us? • World
    [Show full text]
  • Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
    Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project .
    [Show full text]
  • Iterative Design of Advanced Mobile Robots
    Journal of Computing and Information Technology 1 Iterative Design of Advanced Mobile Robots Fran¸coisMichaud1∗, Dominic L´etourneau1 Eric´ Beaudry2, Maxime Fr´echette1, Froduald Kabanza2, and Michel Lauria1 1Department of Electrical Engineering and Computer Engineering, Universit´ede Sherbrooke, Qu´ebec Canada 2Department of Computer Science, Universit´ede Sherbrooke, Qu´ebec Canada Integration of hardware, software and decisional com- 1. Introduction ponents is fundamental in the design of advanced mo- bile robotic systems capable of performing challenging The dream of having autonomous machines perform- tasks in unstructured and unpredictable environments. ing useful tasks in everyday environments, as un- We address such integration challenges following an it- structured and unpredictable as they can be, has erative design strategy, centered on a decisional archi- motivated for many decades now research in robotics tecture based on the notion of motivated selection of and artificial intelligence. However, intelligent and behavior-producing modules. This architecture evolved autonomous mobile robots is still in what can be over the years from the integration of obstacle avoid- ance, message reading and touch screen graphical inter- identified as being research phases, i.e., mostly basic faces, to localization and mapping, planning and schedul- research and concept formulation, and some prelimi- ing, sound source localization, tracking and separation, nary uses of the technology with attempts in clarify- speech recognition and generation on a custom-made in- ing underlying ideas and generalizing the approach teractive robot. Designed to be a scientific robot re- [Shaw 2002]. The challenge in making such a dream porter, the robot provides understandable and config- become a reality lies in the intrinsic complexities urable interaction, intention and information in a con- and interdependencies of the necessary components ference setting, reporting its experiences for on-line and to be integrated in a robot.
    [Show full text]
  • Universidade Federal Do Amazonas Faculdade De Informação E Comunicação Programa De Pós-Graduação Em Ciências Da Comunicação
    UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE INFORMAÇÃO E COMUNICAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA COMUNICAÇÃO MAYANE BATISTA LIMA PERSPECTIVISMO MAQUÍNICO Sobre um ponto de vista heurístico concernente aos ecossistemas comunicacionais MANAUS 2020 MAYANE BATISTA LIMA PERSPECTIVISMO MAQUÍNICO Sobre um ponto de vista heurístico concernente aos ecossistemas comunicacionais Dissertação apresentada como requisito para título de Mestre no Programa de Pós- Graduação em Ciências da Comunicação da Universidade Federal do Amazonas. Linha de Pesquisa 1: Redes e processos comunicacionais. Orientador: Prof. Dr.Renan Albuquerque Coorientadora: Profa. Dra. Denize Piccolotto Carvalho MANAUS 2020 Ficha Catalográfica Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a). Lima, Mayane Batista L732p Perspectivismo Maquínico : Sobre um ponto de vista heurístico concernente aos ecossistemas comunicacionais / Mayane Batista Lima . 2020 74 f.: il. color; 31 cm. Orientador: Renan Albuquerque Coorientadora: Denize Piccolotto Carvalho Dissertação (Mestrado em Ciência da Comunicação) – Universidade Federal do Amazonas. 1. perspectivismo maquínico. 2. ecossistemas comunicacionais. 3. inteligência artificial. 4. robôs. I. Albuquerque, Renan. II. Universidade Federal do Amazonas III. Título PERSPECTIVISMO MAQUÍNICO Sobre um ponto de vista heurístico concernente aos ecossistemas comunicacionais Dissertação apresentada como requisito para título de Mestre no Programa de Pós- Graduação em Ciências da Comunicação da Universidade Federal do Amazonas. Linha de Pesquisa 1: Redes e processos comunicacionais. BANCA EXAMINADORA Prof. Dr. Renan Albuquerque – Presidente Universidade Federal do Amazonas Prof. Dr. João Luiz de Souza – Membro Universidade Federal do Amazonas Profa. Dra. Edilene Mafra – Membro Universidade Federal do Amazonas Profa. Dra. Maria Emília de Oliveira Pereira Abbud – Suplente Universidade Federal do Amazonas Prof. Dr.
    [Show full text]
  • The Meteron Supvis-Justin Telerobotic Experiment and the Solex Proving Ground
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/277268674 SIMULATING AN EXTRATERRESTRIAL ENVIRONMENT FOR ROBOTIC SPACE EXPLORATION: THE METERON SUPVIS-JUSTIN TELEROBOTIC EXPERIMENT AND THE SOLEX PROVING GROUND CONFERENCE PAPER · MAY 2015 READS 16 8 AUTHORS, INCLUDING: Neal Y. Lii Daniel Leidner German Aerospace Center (DLR) German Aerospace Center (DLR) 20 PUBLICATIONS 43 CITATIONS 10 PUBLICATIONS 28 CITATIONS SEE PROFILE SEE PROFILE Benedikt Pleintinger German Aerospace Center (DLR) 9 PUBLICATIONS 11 CITATIONS SEE PROFILE Available from: Neal Y. Lii Retrieved on: 24 September 2015 SIMULATING AN EXTRATERRESTRIAL ENVIRONMENT FOR ROBOTIC SPACE EXPLORATION: THE METERON SUPVIS-JUSTIN TELEROBOTIC EXPERIMENT AND THE SOLEX PROVING GROUND Neal Y. Lii1, Daniel Leidner1, Andre´ Schiele2, Peter Birkenkampf1, Ralph Bayer1, Benedikt Pleintinger1, Andreas Meissner1, and Andreas Balzer1 1Institute of Robotics and Mechatronics, German Aerospace Center (DLR), 82234 Wessling, Germany, Email: [email protected], [email protected] 2Telerobotics and Haptics Laboratory, ESA, 2201 AZ Noordwijk, The Netherlands, Email: [email protected] ABSTRACT This paper presents the on-going development for the Supvis-Justin experiment lead by DLR, together with ESA, planned for 2016. It is part of the ESA initiated Me- teron telerobotics experiment suite aimed to study differ- ent forms of telerobotics solutions for space applications. Supvis-Justin studies the user interface design, and super- vised autonomy aspects of telerobotics, as well as tele- operated tasks for a humanoid robot by teleoperating a dexterous robot on earth (located at DLR) from the Inter- national Space Station (ISS) with the use of a tablet PC. Figure 1.
    [Show full text]
  • Jurnal Teknologi Elektro Jurnal Ilmiah Teknik Elektro Universitas Mercu Buana
    Jurnal Teknologi Elektro Jurnal Ilmiah Teknik Elektro Universitas Mercu Buana http://publikasi.mercubuana.ac.id/index.php/jte Volume 5, Nomor 2, Januari 2014 ISSN: 2086-9479 Pemodelan Simulasi Kontrol Pada Sistem Pengolahan Air Limbah Dengan Menggunakan PLC 58 Badaruddin, Endang Saputra Penerapan Lego Mindstroms NXT Forklift Dan Conveyor Robot Untuk Mensortir Barang Menggunakan Sensor Warna 67 Yudhi Gunardi, Eko Saputro Perancangan Jaringan Transmisi Gelombang Mikro Pada Link Site Mranggen 2 Dengan Site Pucang Gading 76 Said Attamimi, Rachman Perancangan Simulasi Sistem Pemantauan Pintu Perlintasan Kereta Api Berbasis Arduino 87 Eko Ihsanto, Ferdian Ramadhan Rancang Bangun Humanoid Robotic Hand Berbasis Arduino Andi Adriansyah , Muhammad Hafizd Ibnu Hajar 95 Jurnal Mei Halaman ISSN Teknologi Volume Nomor 2014 58– 104 2086-9479 Elektro 5 2 JURNAL TEKNOLOGI ELEKTRO Program Studi Teknik Elektro Fakultas Teknik - Universitas Mercu Buana Volume 5 - Nomor 2 Mei 2014 ISSN: 2086-9479 Daftar Isi i Kata Pengantar ii Susunan Redaksi iii Pemodelan Simulasi Kontrol Pada Sistem Pengolahan Air Limbah 58 Dengan Menggunakan PLC Badaruddin, Endang Saputra Penerapan Lego Mindstroms NXT Forklift Dan Conveyor Robot 67 Untuk Mensortir Barang Menggunakan Sensor Warna Yudhi Gunardi, Eko Saputro Perancangan Jaringan Transmisi Gelombang Mikro 76 Pada Link Site Mranggen 2 Dengan Site Pucang Gading Said Attamimi, Rachman Perancangan Simulasi Sistem Pemantauan Pintu Perlintasan Kereta Api 87 Berbasis Arduino Eko Ihsanto, Ferdian Ramadhan Rancang Bangun Humanoid Robotic Hand Berbasis Arduino 95 Andi Adriansyah , Muhammad Hafizd Ibnu Hajar i KATA PENGANTAR REDAKSI Kami memanjatkan Puji dan Syukur kepada Allah SWT karena atas rahmat dan ridho-nya Jurnal Teknologi Elektro Universitas Mercu Buana, Volume: 5, Nomor: 2 Mei 2014 telah dapat diterbitkan dan sampai kehadapan para pembaca yang budiman.
    [Show full text]
  • Dezfouli Siavash
    Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). MSc Program Engineering Management GLOBAL TRENDS IN COST ORIENTED AUTONOMOUS ROBOT MARKET A Master Thesis submitted for the degree of “Master of Science in Engineering Management” at the Vienna University of Technology supervised by em. o.Univ.Prof. Dr.techn.Dr.hc.mult. Peter Kopacek Siavash Dezfouli 1028312 November 2011, Vienna, Austria Affidavit I, SIAVASH DEZFOULI, hereby declare 1. that I am the sole author of the present Master’s Thesis, "GLOBAL TRENDS IN COST ORIENTED AUTONOMOUS ROBOT MARKET ", 72 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and 2. that I have not prior to this date submitted this Master’s Thesis as an examination paper in any form in Austria or abroad. Vienna, Nov. 2011 Signature ACKNOWLEDGMENT In the first place I would like to record my gratitude to Prof. Peter Kopacek for his supervision, advice, valuable insight, and guidance from the very early stage of this research as my supervisor and his crucial contribution as the Engineering Management Program director in Vienna University of Technology. Above all and the most needed, he provided me unflinching encouragement and support in various ways. His truly scientist intuition has made him as a constant oasis of ideas and passions in science, which exceptionally inspire and enrich my growth as a student, a researcher and a scientist want to be.
    [Show full text]