Mials P
Total Page:16
File Type:pdf, Size:1020Kb
Euclid's Algorithm 171 Euclid's Algorithm Horner’s method is a special case of Euclid's Algorithm which constructs, for given polyno- mials p and h =6 0, (unique) polynomials q and r with deg r<deg h so that p = hq + r: For variety, here is a nonstandard discussion of this algorithm, in terms of elimination. Assume that d h(t)=a0 + a1t + ···+ adt ;ad =06 ; and n p(t)=b0 + b1t + ···+ bnt : Then we seek a polynomial n−d q(t)=c0 + c1t + ···+ cn−dt for which r := p − hq has degree <d. This amounts to the square upper triangular linear system adc0 + ad−1c1 + ···+ a0cd = bd adc1 + ad−1c2 + ···+ a0cd+1 = bd+1 . adcn−d−1 + ad−1cn−d = bn−1 adcn−d = bn for the unknown coefficients c0;:::;cn−d which can be uniquely solved by back substitution since its diagonal entries all equal ad =0.6 19aug02 c 2002 Carl de Boor 172 18. Index Rough index for these notes 1-1:-5,2,8,40 cartesian product: 2 1-norm: 79 Cauchy(-Bunyakovski-Schwarz) 2-norm: 79 Inequality: 69 A-invariance: 125 Cauchy-Binet formula: -9, 166 A-invariant: 113 Cayley-Hamilton Theorem: 133 absolute value: 167 CBS Inequality: 69 absolutely homogeneous: 70, 79 Chaikin algorithm: 139 additive: 20 chain rule: 153 adjugate: 164 change of basis: -6 affine: 151 characteristic function: 7 affine combination: 148, 150 characteristic polynomial: -8, 130, 132, 134 affine hull: 150 circulant: 140 affine map: 149 codimension: 50, 53 affine polynomial: 152 coefficient vector: 21 affine space: 149 cofactor: 163 affinely independent: 151 column map: -6, 23 agrees with y at Λt:59 column space: 29 algebraic dual: 95 column vector: 2 algebraic multiplicity: 130, 133 commutative: 18 alternating: 130, 137, 161 commutative group with respect to addi- angle: 72 tion: 18 angle-preserving: 72 commute: 121 annihilating for A ∈ L(X): 132 compatible: 74 annihilating polynomial: -8 complement: 53, 93 annihilating polynomial for A at x: 107 complementary to: 36 argument: 167 complex: 2, 3 array: 24 complex conjugate: 167 assignment: 1 complex numbers: 1 assignment on I:1 complex plane: 167 associative: 13, 18 component: 53 augmented: 38 composition: 13 Axiom of Choice: 14 condition: 75 axis: 137 condition number: 75, 86, 89 azimuth: 148 congruent: 156 Background: -9 conjugate transpose: 3, 65 barycentric coordinates of p with respect to construction of a basis: 45 Q: 151 continuous function: 19 basic: 32 contour lines: 155 basis: -6, 43 converge to the scalar ζ: 169 basis for X:43 convergence: -7 Basis Selection Algorithm: 45 convergence to 0: -7 belief: 14 convergent: 112 best least-squares solution: 88 convergent to 0: 112 bi-orthonormal: 94 converges: 111, 152 bidual: 97 converges to the n-vector z∞: 111 bilinear: 44 convex combination: 152 bisection: 160 coordinate: 2 boldface: -5 coordinate axis: 53 boring: 120 coordinate map: 56, 82 bound: -6, 32, 40, 45, 54 coordinate space: -6 bound for Z: 168 coordinate vector for x with respect to the bounded: 168, 168 basis v1;v2;:::;vn:43 broken lines: 19 coordinates: -6 canonical: 127 coordinates with respect to the basis: 56 car: 94 correction: -5 cardinality: 1, 8 cost function: 142 05dec02 c 2002 Carl de Boor Index 173 Courant-Fischer minimax Theorem: 158 equivalent equation: -7 Cramer’s rule: 162 error: 75, 98 critical point: -8, 154 Euclid’s Algorithm: 170 cross product: 137, 138, 164 Euclidean norm: -6, 67 current guess: -5 existence: -5, 8, 12 cycle length: 16 expansion by minors: 163 D-invariant: 108 exponential: -7 d-variate polynomials of degree ≤ k:47 extending a 1-1 column map: 45 data map: 56 factor: -6, 54 defect: 50 factor space: 50 defective: -8, 113 family: 2 defective eigenvalue: 102 feasible set: 143 definite: 155 field-addition distributive: 18 DeMorgan’s Law: 93 finest A-invariant direct sum derivative of f at p: 152 decomposition: 122 derivative of f at p in the direction τ: 152 finite-dimensional: 48, 77 determinant: -9, 130 finitely generated: 43 diagona(liza)ble: 101 flat: 149 diagonal matrix: 3 form: 94 diagonalizable: -8 Fourier series: 59 diagonally dominant: 128 free: -6, 32, 45 difference: 1 Frobenius norm: 74 differentiable at p ∈ F : 152 function: 7, 18 dimension: -6 functional: 94 Dimension Formula: -6, 48 Fundamental Theorem of Algebra: 105, 170 dimension of X:46 Gauss: 147 d dimension of Πk(IR ): 47 Gauss-Jordan: 147 dimension of a flat: 150 geometric multiplicity: 133 direct sum: -6, 52 Gershgorin Circle Theorem: 129 directed graph: 136 Gershgorin’s circles: -8 discretize: 55, 57 gradient: -5, 154 domain: -5, 1, 6 Gram-Schmidt: -6 dot product: 64, 137 Gram-Schmidt orthogonalization: 72 dual: 93, 94, 97 Gramian matrix: 57 dual of the vector space: 94 graph: 10 eigenbasis: 101 half-spaces: 21 eigenpair: 99 halfspace: 143 eigenstructure: -8 Hermite interpolation: 59 eigenvalue: -8, 99 Hermitian: 65 eigenvector: -8, 99 hermitian: -8, 64, 86, 87, 120 elegance: -8 Hessian: -8, 154 elementary: 26 homogeneous: -6, 20, 21, 28, 32 elementary matrix: -7, 83 Horner’s scheme: 169 elementary row operation: 26 Householder matrices: 86 elevation: 148 Householder reflection: -7, 73 elimination: -6, 32 hyperplane: 143 elimination step: 32 I-assignment: 1 empty assignment: 2 ith row of A:3 empty set: 1 ((i; j)-entry: 3 end:13 ideal: 123, 133 entry: 1 idempotent: -6, 15, 59 epimorph(ic): 8 identity map: 12 equivalence: 27 identity matrix: 29 equivalence relation: -8, 103 identity permutation: 163 equivalent: 32, 91 image: 7 05dec02 c 2002 Carl de Boor 174 18. Index image of Z under f:6 linear space: -6, 18 imaginary part of z: 167 linear spaces of functions: -6 imaginary unit: 167 linear subspace: -6, 19 indefinite: 155 linear subspace, specification of: 28 index set: 1 linear transformation: 20 initial guess: 98 linearity: -6 injective: 8 linearly dependent on v1;v2;:::;vn:43 inner product: -6, 64 linearly independent: 43 inner product space: -6, 64 linearly independent of v1;v2;:::;vn:43 inner-product preserving: 72 list: 2 integers: 1 local minimizer: 154 interesting eigenvalue: 103 lower triangular: 3 interpolation: -6, 41, 59, 62 m × n-matrix: 3 intersection: 1 main diagonal of A:3 interval with endpoints p, q: 152 map:-5,6,7 inverse: -5, 18, 29 map composition: -5, 13 inverse of f:12 map into Y given by the assignment f:7 inverse of its graph: 12 map norm: -7, 76, 77 invertibility, of triangular matrix: 41 mapping: 7 invertible: -5, 12, 40, 48 matrix: 3 involutory: 86 matrix exponential: 99 irreducible: 122, 135 matrix polynomial: -7 isometry: -6, 72, 80, 91 matrix representation for A:91 item: 1 max-norm: 78 iteration: -7, 98 maximally 1-1: 46 iteration map: 98 maximin Theorem: 158 jth column: 23 maximizer: 154 jth column of A:3 minimal: 82, 122 jth unit vector: 24 minimal (annihilating) polynomial for A: Jacobian: -5, 153 123 Jordan (canonical) form: 126 minimal polynomial: -8 Jordan block: 126 minimal polynomial for A: 133 Jordan form: -8 minimal polynomial for A at x: 107 kernel: 28 minimally onto: 46 Krylov sequence: -8 minimization: -8 Lagrange basis: 58 minimizer for f: 154 Lagrange fundamental polynomials: 58 modulus: 91, 167 least-squares: -6 monic: -8, 107 least-squares solution: 69, 88 monomial of degree j:28 left inverse: -5, 14 monomorph(ic): 8 left shift: 9 Moore-Penrose pseudo-inverse: 89 level lines: 155 morphism: 7 linear: -6, 20, 130 multilinear: 130 linear combination of the vj:43 multiplication by a scalar: -6 linear combination of the vectors v1;v2;:::;vn multiplicity: 129 n with weights a1;a2;:::;an:23 n-dimensional coordinate space IF :19 linear functional: -6, 56, 94 n-list: 2 linear constraint: 143 n-vector: -5, 2 linear in its first argument: 64 natural basis: 51 n linear inequalities, system of: 147 natural basis for IF :43 linear manifold: 149 natural numbers: 1 linear map: -6 negative (semi)definite: 155 linear operator: 20 negative labeling: 103 linear polynomial: 152 nested form: 170 linear programming: 142 nested multiplication: 169 linear projector: -6 neutral: 18 05dec02 c 2002 Carl de Boor Index 175 Newton polynomial: 42 pre-image of U under f:6 Newton’s method: -5 primary decomposition for X wrto A: 124 nilpotent: -7, 124, 125, 132 prime factorization: 122 non-defective: -8 primitive nth root of unity: 141 nonbasic: 32 principal: 133 nonnegative: 91, 134 product: 18 norm: -6 product of matrices: 25 norm of a map: 77 product space: 54 norm, of a vector: 79 projected problem: 88 normal: -8, 120, 143 projector: 15, 59 normal equation!69 proper: 125 normalize: 70 proper chain: 50 normed vector space: 79 proper factor of q: 122 nullspace: -6, 28 proper subset: 1 o.n.: -6, 71 pseudo-inverse: 89 octahedron: 5 QR factorization: -7, 72 onto: -5, 8, 40 QR method: 109 operator: 7 quadratic form: -8, 154 optimization: 142 range: -5, -6, 1 order: 3 range of f:6 orthogonal: 66, 67, 71, 73 rank: -7, 82 orthogonal complement: 71 rank-one perturbation of the identity: 83 orthogonal direct sum: 68 rational numbers: 1 orthonormal: -6, 71, 120 Rayleigh quotient: -8, 157 parity: 131, 162 Rayleigh’s Principle: 158 permutation: 85 real: 2, 3 permutation matrix: -7, 81, 85, 107 real numbers: 1 permutation of order n:9 real part of z: 167 permutation of the first n integers: 162 really reduced: 36 perpendicular: 66 really reduced row echelon form: -6 Perron-Frobenius Theorem: 135 really reduced row echelon form for m×n perturbations: -8 A ∈ IF :36 pigeonhole principle for square matrices: 40 reciprocal: 167 pivot block: 166 reduced: 87 pivot element: 35 reduced row echelon form for A:35 pivot equation: 32 reducible: 135 pivot row: 32 reduction to a sum of squares: 156 PLU factorization: -7 refinement of the Gershgorin Circle point: 149 Theorem: 129 pointwise: -6, 18, 54 reflexive: 103 polar decomposition: 91 relation: 3 polar form: 91, 167 relative error: 75 polyhedron: 5 relative residual: 75 polynomials of degree ≤ k:19 represent: 96 positive: 134 representation: 95 positive (semi)definite: 155 representing: 43 positive definite: 64, 79 residual: 75, 88, 144 positive orthant: 134 right inverse: -5, 14 positive semidefinite: 87, 91 right shift: 9 power method: 118 right side: 21 power sequence: -7, 16 right triangular: -7 power sequence of A: 112 right-handed: 137 power-bounded: 112 root of unity: 141, 142 power-boundedness: -7 row: 56 pre-dual: 97 row echelon form: -6, 34 05dec02 c 2002 Carl de Boor 176 18.