Mials P

Mials P

Euclid's Algorithm 171 Euclid's Algorithm Horner’s method is a special case of Euclid's Algorithm which constructs, for given polyno- mials p and h =6 0, (unique) polynomials q and r with deg r<deg h so that p = hq + r: For variety, here is a nonstandard discussion of this algorithm, in terms of elimination. Assume that d h(t)=a0 + a1t + ···+ adt ;ad =06 ; and n p(t)=b0 + b1t + ···+ bnt : Then we seek a polynomial n−d q(t)=c0 + c1t + ···+ cn−dt for which r := p − hq has degree <d. This amounts to the square upper triangular linear system adc0 + ad−1c1 + ···+ a0cd = bd adc1 + ad−1c2 + ···+ a0cd+1 = bd+1 . adcn−d−1 + ad−1cn−d = bn−1 adcn−d = bn for the unknown coefficients c0;:::;cn−d which can be uniquely solved by back substitution since its diagonal entries all equal ad =0.6 19aug02 c 2002 Carl de Boor 172 18. Index Rough index for these notes 1-1:-5,2,8,40 cartesian product: 2 1-norm: 79 Cauchy(-Bunyakovski-Schwarz) 2-norm: 79 Inequality: 69 A-invariance: 125 Cauchy-Binet formula: -9, 166 A-invariant: 113 Cayley-Hamilton Theorem: 133 absolute value: 167 CBS Inequality: 69 absolutely homogeneous: 70, 79 Chaikin algorithm: 139 additive: 20 chain rule: 153 adjugate: 164 change of basis: -6 affine: 151 characteristic function: 7 affine combination: 148, 150 characteristic polynomial: -8, 130, 132, 134 affine hull: 150 circulant: 140 affine map: 149 codimension: 50, 53 affine polynomial: 152 coefficient vector: 21 affine space: 149 cofactor: 163 affinely independent: 151 column map: -6, 23 agrees with y at Λt:59 column space: 29 algebraic dual: 95 column vector: 2 algebraic multiplicity: 130, 133 commutative: 18 alternating: 130, 137, 161 commutative group with respect to addi- angle: 72 tion: 18 angle-preserving: 72 commute: 121 annihilating for A ∈ L(X): 132 compatible: 74 annihilating polynomial: -8 complement: 53, 93 annihilating polynomial for A at x: 107 complementary to: 36 argument: 167 complex: 2, 3 array: 24 complex conjugate: 167 assignment: 1 complex numbers: 1 assignment on I:1 complex plane: 167 associative: 13, 18 component: 53 augmented: 38 composition: 13 Axiom of Choice: 14 condition: 75 axis: 137 condition number: 75, 86, 89 azimuth: 148 congruent: 156 Background: -9 conjugate transpose: 3, 65 barycentric coordinates of p with respect to construction of a basis: 45 Q: 151 continuous function: 19 basic: 32 contour lines: 155 basis: -6, 43 converge to the scalar ζ: 169 basis for X:43 convergence: -7 Basis Selection Algorithm: 45 convergence to 0: -7 belief: 14 convergent: 112 best least-squares solution: 88 convergent to 0: 112 bi-orthonormal: 94 converges: 111, 152 bidual: 97 converges to the n-vector z∞: 111 bilinear: 44 convex combination: 152 bisection: 160 coordinate: 2 boldface: -5 coordinate axis: 53 boring: 120 coordinate map: 56, 82 bound: -6, 32, 40, 45, 54 coordinate space: -6 bound for Z: 168 coordinate vector for x with respect to the bounded: 168, 168 basis v1;v2;:::;vn:43 broken lines: 19 coordinates: -6 canonical: 127 coordinates with respect to the basis: 56 car: 94 correction: -5 cardinality: 1, 8 cost function: 142 05dec02 c 2002 Carl de Boor Index 173 Courant-Fischer minimax Theorem: 158 equivalent equation: -7 Cramer’s rule: 162 error: 75, 98 critical point: -8, 154 Euclid’s Algorithm: 170 cross product: 137, 138, 164 Euclidean norm: -6, 67 current guess: -5 existence: -5, 8, 12 cycle length: 16 expansion by minors: 163 D-invariant: 108 exponential: -7 d-variate polynomials of degree ≤ k:47 extending a 1-1 column map: 45 data map: 56 factor: -6, 54 defect: 50 factor space: 50 defective: -8, 113 family: 2 defective eigenvalue: 102 feasible set: 143 definite: 155 field-addition distributive: 18 DeMorgan’s Law: 93 finest A-invariant direct sum derivative of f at p: 152 decomposition: 122 derivative of f at p in the direction τ: 152 finite-dimensional: 48, 77 determinant: -9, 130 finitely generated: 43 diagona(liza)ble: 101 flat: 149 diagonal matrix: 3 form: 94 diagonalizable: -8 Fourier series: 59 diagonally dominant: 128 free: -6, 32, 45 difference: 1 Frobenius norm: 74 differentiable at p ∈ F : 152 function: 7, 18 dimension: -6 functional: 94 Dimension Formula: -6, 48 Fundamental Theorem of Algebra: 105, 170 dimension of X:46 Gauss: 147 d dimension of Πk(IR ): 47 Gauss-Jordan: 147 dimension of a flat: 150 geometric multiplicity: 133 direct sum: -6, 52 Gershgorin Circle Theorem: 129 directed graph: 136 Gershgorin’s circles: -8 discretize: 55, 57 gradient: -5, 154 domain: -5, 1, 6 Gram-Schmidt: -6 dot product: 64, 137 Gram-Schmidt orthogonalization: 72 dual: 93, 94, 97 Gramian matrix: 57 dual of the vector space: 94 graph: 10 eigenbasis: 101 half-spaces: 21 eigenpair: 99 halfspace: 143 eigenstructure: -8 Hermite interpolation: 59 eigenvalue: -8, 99 Hermitian: 65 eigenvector: -8, 99 hermitian: -8, 64, 86, 87, 120 elegance: -8 Hessian: -8, 154 elementary: 26 homogeneous: -6, 20, 21, 28, 32 elementary matrix: -7, 83 Horner’s scheme: 169 elementary row operation: 26 Householder matrices: 86 elevation: 148 Householder reflection: -7, 73 elimination: -6, 32 hyperplane: 143 elimination step: 32 I-assignment: 1 empty assignment: 2 ith row of A:3 empty set: 1 ((i; j)-entry: 3 end:13 ideal: 123, 133 entry: 1 idempotent: -6, 15, 59 epimorph(ic): 8 identity map: 12 equivalence: 27 identity matrix: 29 equivalence relation: -8, 103 identity permutation: 163 equivalent: 32, 91 image: 7 05dec02 c 2002 Carl de Boor 174 18. Index image of Z under f:6 linear space: -6, 18 imaginary part of z: 167 linear spaces of functions: -6 imaginary unit: 167 linear subspace: -6, 19 indefinite: 155 linear subspace, specification of: 28 index set: 1 linear transformation: 20 initial guess: 98 linearity: -6 injective: 8 linearly dependent on v1;v2;:::;vn:43 inner product: -6, 64 linearly independent: 43 inner product space: -6, 64 linearly independent of v1;v2;:::;vn:43 inner-product preserving: 72 list: 2 integers: 1 local minimizer: 154 interesting eigenvalue: 103 lower triangular: 3 interpolation: -6, 41, 59, 62 m × n-matrix: 3 intersection: 1 main diagonal of A:3 interval with endpoints p, q: 152 map:-5,6,7 inverse: -5, 18, 29 map composition: -5, 13 inverse of f:12 map into Y given by the assignment f:7 inverse of its graph: 12 map norm: -7, 76, 77 invertibility, of triangular matrix: 41 mapping: 7 invertible: -5, 12, 40, 48 matrix: 3 involutory: 86 matrix exponential: 99 irreducible: 122, 135 matrix polynomial: -7 isometry: -6, 72, 80, 91 matrix representation for A:91 item: 1 max-norm: 78 iteration: -7, 98 maximally 1-1: 46 iteration map: 98 maximin Theorem: 158 jth column: 23 maximizer: 154 jth column of A:3 minimal: 82, 122 jth unit vector: 24 minimal (annihilating) polynomial for A: Jacobian: -5, 153 123 Jordan (canonical) form: 126 minimal polynomial: -8 Jordan block: 126 minimal polynomial for A: 133 Jordan form: -8 minimal polynomial for A at x: 107 kernel: 28 minimally onto: 46 Krylov sequence: -8 minimization: -8 Lagrange basis: 58 minimizer for f: 154 Lagrange fundamental polynomials: 58 modulus: 91, 167 least-squares: -6 monic: -8, 107 least-squares solution: 69, 88 monomial of degree j:28 left inverse: -5, 14 monomorph(ic): 8 left shift: 9 Moore-Penrose pseudo-inverse: 89 level lines: 155 morphism: 7 linear: -6, 20, 130 multilinear: 130 linear combination of the vj:43 multiplication by a scalar: -6 linear combination of the vectors v1;v2;:::;vn multiplicity: 129 n with weights a1;a2;:::;an:23 n-dimensional coordinate space IF :19 linear functional: -6, 56, 94 n-list: 2 linear constraint: 143 n-vector: -5, 2 linear in its first argument: 64 natural basis: 51 n linear inequalities, system of: 147 natural basis for IF :43 linear manifold: 149 natural numbers: 1 linear map: -6 negative (semi)definite: 155 linear operator: 20 negative labeling: 103 linear polynomial: 152 nested form: 170 linear programming: 142 nested multiplication: 169 linear projector: -6 neutral: 18 05dec02 c 2002 Carl de Boor Index 175 Newton polynomial: 42 pre-image of U under f:6 Newton’s method: -5 primary decomposition for X wrto A: 124 nilpotent: -7, 124, 125, 132 prime factorization: 122 non-defective: -8 primitive nth root of unity: 141 nonbasic: 32 principal: 133 nonnegative: 91, 134 product: 18 norm: -6 product of matrices: 25 norm of a map: 77 product space: 54 norm, of a vector: 79 projected problem: 88 normal: -8, 120, 143 projector: 15, 59 normal equation!69 proper: 125 normalize: 70 proper chain: 50 normed vector space: 79 proper factor of q: 122 nullspace: -6, 28 proper subset: 1 o.n.: -6, 71 pseudo-inverse: 89 octahedron: 5 QR factorization: -7, 72 onto: -5, 8, 40 QR method: 109 operator: 7 quadratic form: -8, 154 optimization: 142 range: -5, -6, 1 order: 3 range of f:6 orthogonal: 66, 67, 71, 73 rank: -7, 82 orthogonal complement: 71 rank-one perturbation of the identity: 83 orthogonal direct sum: 68 rational numbers: 1 orthonormal: -6, 71, 120 Rayleigh quotient: -8, 157 parity: 131, 162 Rayleigh’s Principle: 158 permutation: 85 real: 2, 3 permutation matrix: -7, 81, 85, 107 real numbers: 1 permutation of order n:9 real part of z: 167 permutation of the first n integers: 162 really reduced: 36 perpendicular: 66 really reduced row echelon form: -6 Perron-Frobenius Theorem: 135 really reduced row echelon form for m×n perturbations: -8 A ∈ IF :36 pigeonhole principle for square matrices: 40 reciprocal: 167 pivot block: 166 reduced: 87 pivot element: 35 reduced row echelon form for A:35 pivot equation: 32 reducible: 135 pivot row: 32 reduction to a sum of squares: 156 PLU factorization: -7 refinement of the Gershgorin Circle point: 149 Theorem: 129 pointwise: -6, 18, 54 reflexive: 103 polar decomposition: 91 relation: 3 polar form: 91, 167 relative error: 75 polyhedron: 5 relative residual: 75 polynomials of degree ≤ k:19 represent: 96 positive: 134 representation: 95 positive (semi)definite: 155 representing: 43 positive definite: 64, 79 residual: 75, 88, 144 positive orthant: 134 right inverse: -5, 14 positive semidefinite: 87, 91 right shift: 9 power method: 118 right side: 21 power sequence: -7, 16 right triangular: -7 power sequence of A: 112 right-handed: 137 power-bounded: 112 root of unity: 141, 142 power-boundedness: -7 row: 56 pre-dual: 97 row echelon form: -6, 34 05dec02 c 2002 Carl de Boor 176 18.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us