Bartlett Washington 0250E 150

Total Page:16

File Type:pdf, Size:1020Kb

Bartlett Washington 0250E 150 c Copyright 2015 Alan Bartlett Spectral Theory of Zd Substitutions Alan Bartlett A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Boris Solomyak, Chair Christopher Hoffman Tatiana Toro Program Authorized to Offer Degree: Mathematics University of Washington Abstract d Spectral Theory of Z Substitutions Alan Bartlett Chair of the Supervisory Committee: Professor Boris Solomyak Mathematics In this paper, we generalize and develop results of Queff´elecallowing us to characterize the d spectrum of an aperiodic substitution in Z by describing the Fourier coefficients of mutually singular measures of pure type giving rise to the maximal spectral type of the translation operator on L2. This is done without any assumptions on primitivity or height, and provides a simple algorithm for determining singularity to Lebesgue spectrum for such substitutions, and we use this to show singularity of the spectrum for Queffe´lec's noncommutative bijective substitution, as well as the Table tiling, answering an open question of Solomyak. Moreover, d we also prove that the spectrum of any aperiodic bijective commutative Z substitution on a finite alphabet is purely singular. Finally, we show that every ergodic matrix of measures on a compact metric space can be diagonalized, which we use in the proof of the main result. TABLE OF CONTENTS Page Chapter 1: Introduction . .1 d 1.1 Dynamical Systems and Z Actions . .7 1.2 Substitution Dynamical Systems . 12 Chapter 2: Aperiodic q-Substitutions . 19 d 2.1 Arithmetic Base q in Z .............................. 19 2.2 Instructions and Configurations . 21 2.3 Aperiodicity and the Subshift . 27 Chapter 3: Spectral Theory . 35 3.1 The Correlation Vector - Σ . 36 3.2 The Spectral Hull - K ............................... 40 3.3 Queff´elec'sTheorem . 43 3.4 Aperiodic Bijective Commutative q-Substitutions . 46 Chapter 4: Computing the Spectrum . 49 4.1 Substititutions with Purely Singular Spectrum . 54 4.2 Substitutions with Lebesgue Spectral Component . 58 4.3 Substitutions with Every Spectral Component . 61 4.4 Height and Dekking's Criterion . 64 Chapter 5: Appendix . 69 5.1 Generalized Functionals on MpXq ........................ 69 5.2 Proof of Queff´elec'sTheorem . 75 i ACKNOWLEDGMENTS I would like to thank my advisor, Boris Solomyak, for his support and guidance. ii 1 Chapter 1 INTRODUCTION Substitutions are of interest to us as models of aperiodic phenomena - for example, mathematical quasicrystals, see [3]. Here, we consider higher dimensional analogues of d substitutions of constant length, or Z -substitutions which replace letters in a finite alphabet A with a rectangular block (indexed over the semirectangle r0; qq, see notation at the end of this section) of letters, and which we call q-substitutions. As usual, we study the translation d operator T on the hull XS of a substitution S, or the collection of all Z -indexed sequences whose local patterns can be produced by the substitution. Our primary interest is the spectrum (or the maximal spectral type, σmax) of the translation action, and our analysis is based on the work of Queff´elec,which describes the spectrum of one-sided primitive and aperiodic constant length substitutions of trivial height in one dimension (N-indexed sequences). Our formulation emphasizes the arithmetic properties of such substitutions and the recognizability properties afforded by aperiodic substitutions: those without any periodic sequences in their hull. Using only these two assumptions, we are able to describe the spectrum of such a substitution by identifying its discrete, singular continuous, and absolutely continuous spectral components as a sum of mutually singular measures of pure type with readily computable Fourier coefficients. This is done by using a representation consistent with the abelianization (which gives rise to the substitution matrix) and separates the analysis into two parts: the correlation measures, which depend on the position of letters in substituted blocks (which we call the configuration), and the spectral hull, a convex set depending on a coincidence matrix CS which is configuration-independent. An important notion in tiling theory is that of local rules which force global (aperiodic) d order. A result of Moz´es[19] asserts that self-similar tilings, corresponding to Z substitu- tions for d ¡ 1, can be obtained by local pattern matching rules, albeit, in general, at the cost of increasing the size of the alphabet, whereas this assertion is false for d “ 1. (We refer 2 the reader to [3] for details and more recent work in this direction.) Moreover, it is known that the mathematical diffraction spectrum is included in the dynamical spectrum (that of the translation operator on L2) as a consequence of Dworkin's argument [11] (see also [16], d [4] and references therein), and so our extension of Queff´elec'sresults to Z substitutions are of interest as they allow us to describe diffraction (and dynamical) properties of higher dimensional mathematical quasicrystals. We summarize the paper while highlighting the main ideas. First, we begin with a general introduction to topological dynamics, their invariant measures and spectral theory. d Then, in x1.2, we discuss preliminaries for the theory of Z -indexed substitution dynamical systems, including their invariant measures in x1.2.1 and spectral theory in x1.2.2. As usual, Michel's theorem 1.2.1 is used to identify the uniquely ergodic measure of a primitive system in terms of the Perron vector of MS ; its substitution matrix.A primitive reduced form (proposition 1.2.2) is used to represent an arbitrary substitution in terms of its primitive components, which combine in the nonprimitive case with theorem 1.2.4 of Cortez and Solomyak to describe the invariant measures as the convex hull of the invariant measures of its primitive components. Note that q-substitution dynamical systems are never weakly- mixing as Dekking's theorem 4.4.1 shows they always have nontrivial discrete spectrum; more generally, Dekking and Keane proved in [10] that primitive substitution systems cannot be strongly mixing. This should not be confused with the statement of our main result, theorem 3.3.1, which shows that the spectrum of S can be decomposed into measures d strongly-mixing for the q-shift on T ; as this is a statement about the spectrum of S (not its shift-invariant measures) relative to an entirely different dynamical system. Following the discussion on invariant measures, we discuss the essentials for the spectral theory of substitution dynamical systems where we give a very brief account of some existing results in the spectral theory of q-substitutions. In x2 we develop arithmetic and topological properties of aperiodic q-substitutions which A combine with a representation of the alphabet A in the vector space C , and of substitutions in the matrix algebra MApCq, to give us several useful tools (propositions 2.3.5, 2.3.7 and 2.3.8) relating the configuration of an aperiodic q-substitution to both its topological and measure theoretic structure. In x2.1 we develop some basic notation for q-adic arithmetic 3 d in Z , as well as a key lemma (2.1.1) which essentially lets us ignore the overlapping of superblocks T kSnpαq arising in a number of contexts; this removes an otherwise significant impediment to a detailed description of the spectrum, as tracking the discrepancies caused by overlaps destroys any hope of a detailed analysis, see the discussion at the end of x3.1. In x2.2, we give an arithmetic description (proposition 2.2.1) of q-substitutions in terms of configurations, which represents a q-substitution in terms of instructions A Ñ A arranged by location, and an equivalence of substitutions is described, relating two substitutions when there is a bijective rearrangement of their configurations which exchanges them. We also describe two constructions on substitutions: definitions 2.2.3 for cycled substitutions and 2.2.6 for the substitution product. A cycled q-substitution is obtained by permuting the associated configuration, and is related to the map T kSn: The substitution product takes two q-substitutions, S on A and S~ on A~, and produces a third q-substitution, S bS~ on AA~, and is related to the bisubstitution and the coincidence matrix CS “ MSbS of Queff´elec. In x2.3 we discuss consequences of aperiodicity beginning with a convenient criteria of Pansiot (lemma 2.3.1) allowing for a readily verifiable description of aperiodicity in the Z d case; a generalization to Z would be of significant interest, but no serious attempts by this author have been made. Next, we use a result of Moss´eand Solomyak (theorem 2.3.2) to identify aperiodicity with recognizability, a property of substitutions allowing for unique local desubstitution, and which gives rise to many useful topological properties summarized in proposition 2.3.4. Moreover, this allows us to describe the subshift as an iterated func- tion system on the maps T kS, for k in a fixed finite set. Using this perspective, we give a description of the Borel structure of XS through a collection of iterated cylinders (definition d 2.3.3) which represent the cylinders of AZ iterated through the above function system. This description is expressed in three ways: the partition formula of proposition 2.3.5 which describes how the lattice of iterated cylinders partition the subshift by degree; the mea- sure formula of proposition 2.3.7 which gives recursive identities allowing one to explicitly compute the measure of an arbitrary cylinder in XS , for an arbitrary invariant measure sup- ported by the subshift; and finally, the density of iterated indicators of proposition 2.3.8, permitting the study of the translation action on L2pµq in terms of the iterated indicator 1 1 functions T kSnrαs, and ultimately the indicators rαs via theorem 3.1.4 discussed below.
Recommended publications
  • Optimal Matching Distances Between Categorical Sequences: Distortion and Inferences by Permutation Juan P
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Applied Statistics Department of Mathematics and Statistics 12-2013 Optimal Matching Distances between Categorical Sequences: Distortion and Inferences by Permutation Juan P. Zuluaga Follow this and additional works at: https://repository.stcloudstate.edu/stat_etds Part of the Applied Statistics Commons Recommended Citation Zuluaga, Juan P., "Optimal Matching Distances between Categorical Sequences: Distortion and Inferences by Permutation" (2013). Culminating Projects in Applied Statistics. 8. https://repository.stcloudstate.edu/stat_etds/8 This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Applied Statistics by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. OPTIMAL MATCHING DISTANCES BETWEEN CATEGORICAL SEQUENCES: DISTORTION AND INFERENCES BY PERMUTATION by Juan P. Zuluaga B.A. Universidad de los Andes, Colombia, 1995 A Thesis Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree Master of Science St. Cloud, Minnesota December, 2013 This thesis submitted by Juan P. Zuluaga in partial fulfillment of the requirements for the Degree of Master of Science at St. Cloud State University is hereby approved by the final evaluation committee. Chairperson Dean School of Graduate Studies OPTIMAL MATCHING DISTANCES BETWEEN CATEGORICAL SEQUENCES: DISTORTION AND INFERENCES BY PERMUTATION Juan P. Zuluaga Sequence data (an ordered set of categorical states) is a very common type of data in Social Sciences, Genetics and Computational Linguistics.
    [Show full text]
  • Sequence Motifs, Correlations and Structural Mapping of Evolutionary
    Talk overview • Sequence profiles – position specific scoring matrix • Psi-blast. Automated way to create and use sequence Sequence motifs, correlations profiles in similarity searches and structural mapping of • Sequence patterns and sequence logos evolutionary data • Bioinformatic tools which employ sequence profiles: PFAM BLOCKS PROSITE PRINTS InterPro • Correlated Mutations and structural insight • Mapping sequence data on structures: March 2011 Eran Eyal Conservations Correlations PSSM – position specific scoring matrix • A position-specific scoring matrix (PSSM) is a commonly used representation of motifs (patterns) in biological sequences • PSSM enables us to represent multiple sequence alignments as mathematical entities which we can work with. • PSSMs enables the scoring of multiple alignments with sequences, or other PSSMs. PSSM – position specific scoring matrix Assuming a string S of length n S = s1s2s3...sn If we want to score this string against our PSSM of length n (with n lines): n alignment _ score = m ∑ s j , j j=1 where m is the PSSM matrix and sj are the string elements. PSSM can also be incorporated to both dynamic programming algorithms and heuristic algorithms (like Psi-Blast). Sequence space PSI-BLAST • For a query sequence use Blast to find matching sequences. • Construct a multiple sequence alignment from the hits to find the common regions (consensus). • Use the “consensus” to search again the database, and get a new set of matching sequences • Repeat the process ! Sequence space Position-Specific-Iterated-BLAST • Intuition – substitution matrices should be specific to sites and not global. – Example: penalize alanine→glycine more in a helix •Idea – Use BLAST with high stringency to get a set of closely related sequences.
    [Show full text]
  • Computational Biology Lecture 8: Substitution Matrices Saad Mneimneh
    Computational Biology Lecture 8: Substitution matrices Saad Mneimneh As we have introduced last time, simple scoring schemes like +1 for a match, -1 for a mismatch and -2 for a gap are not justifiable biologically, especially for amino acid sequences (proteins). Instead, more elaborated scoring functions are used. These scores are usually obtained as a result of analyzing chemical properties and statistical data for amino acids and DNA sequences. For example, it is known that same size amino acids are more likely to be substituted by one another. Similarly, amino acids with same affinity to water are likely to serve the same purpose in some cases. On the other hand, some mutations are not acceptable (may lead to demise of the organism). PAM and BLOSUM matrices are amongst results of such analysis. We will see the techniques through which PAM and BLOSUM matrices are obtained. Substritution matrices Chemical properties of amino acids govern how the amino acids substitue one another. In principle, a substritution matrix s, where sij is used to score aligning character i with character j, should reflect the probability of two characters substituing one another. The question is how to build such a probability matrix that closely maps reality? Different strategies result in different matrices but the central idea is the same. If we go back to the concept of a high scoring segment pair, theory tells us that the alignment (ungapped) given by such a segment is governed by a limiting distribution such that ¸sij qij = pipje where: ² s is the subsitution matrix used ² qij is the probability of observing character i aligned with character j ² pi is the probability of occurrence of character i Therefore, 1 qij sij = ln ¸ pipj This formula for sij suggests a way to constrcut the matrix s.
    [Show full text]
  • Development of Novel Classical and Quantum Information Theory Based Methods for the Detection of Compensatory Mutations in Msas
    Development of novel Classical and Quantum Information Theory Based Methods for the Detection of Compensatory Mutations in MSAs Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades ”Doctor rerum naturalium” der Georg-August-Universität Göttingen im Promotionsprogramm PCS der Georg-August University School of Science (GAUSS) vorgelegt von Mehmet Gültas aus Kirikkale-Türkei Göttingen, 2013 Betreuungsausschuss Professor Dr. Stephan Waack, Institut für Informatik, Georg-August-Universität Göttingen. Professor Dr. Carsten Damm, Institut für Informatik, Georg-August-Universität Göttingen. Professor Dr. Edgar Wingender, Institut für Bioinformatik, Universitätsmedizin, Georg-August-Universität Göttingen. Mitglieder der Prüfungskommission Referent: Prof. Dr. Stephan Waack, Institut für Informatik, Georg-August-Universität Göttingen. Korreferent: Prof. Dr. Carsten Damm, Institut für Informatik, Georg-August-Universität Göttingen. Korreferent: Prof. Dr. Mario Stanke, Institut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald Weitere Mitglieder der Prüfungskommission Prof. Dr. Edgar Wingender, Institut für Bioinformatik, Universitätsmedizin, Georg-August-Universität Göttingen. Prof. Dr. Burkhard Morgenstern, Institut für Mikrobiologie und Genetik, Abteilung für Bioinformatik, Georg-August- Universität Göttingen. Prof. Dr. Dieter Hogrefe, Institut für Informatik, Georg-August-Universität Göttingen. Prof. Dr. Wolfgang May, Institut für Informatik, Georg-August-Universität Göttingen. Tag der mündlichen
    [Show full text]
  • 3D Representations of Amino Acids—Applications to Protein Sequence Comparison and Classification
    Computational and Structural Biotechnology Journal 11 (2014) 47–58 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj 3D representations of amino acids—applications to protein sequence comparison and classification Jie Li a, Patrice Koehl b,⁎ a Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, United States b Department of Computer Science and Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, United States article info abstract Available online 6 September 2014 The amino acid sequence of a protein is the key to understanding its structure and ultimately its function in the cell. This paper addresses the fundamental issue of encoding amino acids in ways that the representation of such Keywords: a protein sequence facilitates the decoding of its information content. We show that a feature-based representa- Protein sequences tion in a three-dimensional (3D) space derived from amino acid substitution matrices provides an adequate Substitution matrices representation that can be used for direct comparison of protein sequences based on geometry. We measure Protein sequence classification the performance of such a representation in the context of the protein structural fold prediction problem. Fold recognition We compare the results of classifying different sets of proteins belonging to distinct structural folds against classifications of the same proteins obtained from sequence alone or directly from structural information. We find that sequence alone performs poorly as a structure classifier.Weshowincontrastthattheuseofthe three dimensional representation of the sequences significantly improves the classification accuracy. We conclude with a discussion of the current limitations of such a representation and with a description of potential improvements.
    [Show full text]
  • Assume an F84 Substitution Model with Nucleotide Frequ
    Exercise Sheet 5 Computational Phylogenetics Prof. D. Metzler Exercise 1: Assume an F84 substitution model with nucleotide frequencies (πA; πC ; πG; πT ) = (0:2; 0:3; 0:3; 0:2), a rate λ = 0:1 of “crosses” and a rate µ = 0:2 of “bullets” (see lecture). (a) Assume that the nucleotide at some site is A at time t. Calculate the probabilities that the nucleotide is A, C or G at time t + 0:2. (b) Assume the nucleotide distribution in a genomic region is (0:1; 0:2; 0:3; 0:4) at time t, but from this time on the genomic region evolves according to the model above. Calculate the expectation values for the nucleotide distributions at time points t + 0:2 and t + 2. Exercise 2: Calculate rate matrix for the nucleotide substution process for which the substitution matrix for time t is 0 1−e−t=10 21+9e−t=10−30e−t=5 1−e−t=10 1 PA!A(t) 10 70 5 B 2−2e−t=10 3−3et=10 3+7e−t=10−10e−t=5 C B PC!C (t) C S(t) = B 5 10 15 C ; B 14+6e−t=10−20e−t=5 1−e−t=10 1−e−t=10 C B PG!G(t) C @ 35 10 5 A 2−2e−t=10 3+7e−t=10−10e−t=5 3−3e−t=10 5 30 10 PT !T (t) where the diagonal entries PA!A(t), PC!C (t), PG!G(t) and PT !T (t) are the values that fulfill that each row sum is 1 in the matrix S(t).
    [Show full text]
  • Amino Acid Substitution Matrices from an Information Theoretic Perspective
    p J. Mol. Bd-(1991) 219, 555-565 Amino Acid Substitution Matrices from an , Information Theoretic Perspective Stephen F. Altschul National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda, MD 20894, U.S.S. (Received 1 October 1990; accepted 12 February 1991) Protein sequence alignments have become an important tool for molecular biologists. Local alignments are frequently constructed with the aid of a “substitution score matrix” that specifies a scorefor aligning each pair of amino acid residues. Over the years, manydifferent substitution matrices have been proposed, based on a wide variety of rationales. Statistical results, however, demonstrate that any such matrix is i.mplicitly a “log-odds” matrix, with a specific targetdistribution for aligned pairs of amino acid residues. Inthe light of information theory, itis possible to express the scores of a substitution matrix in bits and to see that different matrices are better adapted to different purposes. The most widely used matrix for protein sequence comparison has been the PAM-250 matrix. It is argued that for database searches the PAM-,I20 matrix generally is more appropriate, while for comparing two specific proteins with.suspecte4 homology the PAM-200 matrix is indicated. Examples discussed include the lipocalins, human a,B-glycoprotein, the cysticfibrosis transmembrane conductance regulator and the globins. Keywords: homology; sequence comparison; statistical significance; alignment algorithms; pattern recognition 2. Introduction . similarity measure (Smith & Waterman, 1981; Goad & Kanehisa, 1982; Sellers, 1984). This has the General methods for protein sequence comparison advantage of placing no a priori restrictions on the were introduced to molecular biology 20 years ago length of the local alignments sought.
    [Show full text]
  • Comparison Theorems for Splittings of M-Matrices in (Block) Hessenberg
    Comparison Theorems for Splittings of M-matrices in (block) Hessenberg Form Gemignani, Luca Dipartimento di Informatica Universit`adi Pisa [email protected] Poloni, Federico Dipartimento di Informatica Universit`adi Pisa [email protected] Abstract Some variants of the (block) Gauss–Seidel iteration for the solution of linear systems with M-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix ρ(PGS ) ≥ ρ(PS) ≥ ρ(PAGS), where PGS , PS , PAGS are the iteration matrices of the Gauss–Seidel, staircase, and anti- Gauss–Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation. AMS classification: 65F15 1 Introduction Solving block Hessenberg systems is one of the key issues in numerical simula- tions of many scientific and engineering problems. Possibly singular M-matrix arXiv:2106.10492v1 [math.NA] 19 Jun 2021 linear systems in block Hessenberg form are found in finite difference or finite element methods for partial differential equations, Markov chains, production and growth models in economics, and linear complementarity problems in op- erational research [14, 2]. Finite difference or finite element discretizations of PDEs usually produce matrices which are banded or block banded (e.g., block tridiagonal or block pentadiagonal) [16]. Discrete-state models encountered in several applications such as modeling and analysis of communication and com- puter networks can be conveniently represented by a discrete/continuous time Markov chain [14].
    [Show full text]
  • Pathological Rate Matrices: from Primates to Pathogens
    UC San Diego UC San Diego Previously Published Works Title Pathological rate matrices: from primates to pathogens. Permalink https://escholarship.org/uc/item/5cm8723c Journal BMC bioinformatics, 9(1) ISSN 1471-2105 Authors Schranz, Harold W Yap, Von Bing Easteal, Simon et al. Publication Date 2008-12-19 DOI 10.1186/1471-2105-9-550 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BMC Bioinformatics BioMed Central Research article Open Access Pathological rate matrices: from primates to pathogens Harold W Schranz1, Von Bing Yap2, Simon Easteal1, Rob Knight3 and Gavin A Huttley*1 Address: 1John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia, 2Department of Statistics and Applied Probability National University of Singapore, Kent Ridge, Singapore and 3Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, USA Email: Harold W Schranz - [email protected]; Von Bing Yap - [email protected]; Simon Easteal - [email protected]; Rob Knight - [email protected]; Gavin A Huttley* - [email protected] * Corresponding author Published: 19 December 2008 Received: 30 June 2008 Accepted: 19 December 2008 BMC Bioinformatics 2008, 9:550 doi:10.1186/1471-2105-9-550 This article is available from: http://www.biomedcentral.com/1471-2105/9/550 © 2008 Schranz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • 3D Deep Convolutional Neural Networks for Amino Acid Environment Similarity Analysis Wen Torng1 and Russ B
    Torng and Altman BMC Bioinformatics (2017) 18:302 DOI 10.1186/s12859-017-1702-0 METHODOLOGY ARTICLE Open Access 3D deep convolutional neural networks for amino acid environment similarity analysis Wen Torng1 and Russ B. Altman1,2* Abstract Background: Central to protein biology is the understanding of how structural elements give rise to observed function. The surfeit of protein structural data enables development of computational methods to systematically derive rules governing structural-functional relationships. However, performance of these methods depends critically on the choice of protein structural representation. Most current methods rely on features that are manually selected based on knowledge about protein structures. These are often general-purpose but not optimized for the specific application of interest. In this paper, we present a general framework that applies 3D convolutional neural network (3DCNN) technology to structure-based protein analysis. The framework automatically extracts task-specific features from the raw atom distribution, driven by supervised labels. As a pilot study, we use our network to analyze local protein microenvironments surrounding the 20 amino acids, and predict the amino acids most compatible with environments within a protein structure. To further validate the power of our method, we construct two amino acid substitution matrices from the prediction statistics and use them to predict effects of mutations in T4 lysozyme structures. Results: Our deep 3DCNN achieves a two-fold increase in prediction accuracy compared to models that employ conventional hand-engineered features and successfully recapitulates known information about similar and different microenvironments. Models built from our predictions and substitution matrices achieve an 85% accuracy predicting outcomes of the T4 lysozyme mutation variants.
    [Show full text]
  • Multiplicatively Closed Markov Models Must Form Lie Algebras
    Multiplicatively closed Markov models must form Lie algebras Jeremy G Sumner University of Tasmania, Australia [email protected] September 26, 2018 Abstract We prove that the probability substitution matrices obtained from a continuous-time Markov chain form a multiplicatively closed set if and only if the rate matrices associated to the chain form a linear space spanning a Lie algebra. The key original contribution we make is to overcome an obstruction, due to the presence of inequalities that are unavoidable in the probabilistic application, that prevents free manipulation of terms in the Baker-Campbell- Haursdorff formula. Keywords: Lie algebras; continuous-time Markov chains; semigroups; phylogenetics AMS classification codes: 17B45; 60J27 1 Background In this note we prove a result which makes explicit the requirement that a multiplicatively-closed Markov model must form a Lie algebra (definitions will be provided). We consider continuous-time Markov chains and work under the general assumption that a model is determined by specifying a subset of rate matrices (or rate generators). These models are used in a wide array of scientific modelling problems and have been previously studied in the context of Lie group theory by [8, 9]. Although the results given here are general, we are motivated primarily by applications to phylogenetics. Phylogenetics consists of the mathematical and statistical methods applied to reconstructing arXiv:1704.01418v2 [math.GR] 1 Sep 2017 evolutionary history from observed molecular sequences such as DNA [3]. Recent theoretical work [4, 12] has discussed the relevance of Lie groups and algebras to this applied area. The importance of Lie algebras to robust phylogenetic modelling has been demonstrated using simulation in [13], as well as on a diverse set of biological data sets in [15].
    [Show full text]
  • Metzlerian and Generalized Metzlerian Matrices: Some Properties and Economic Applications
    Journal of Mathematics Research; Vol. 7, No. 2; 2015 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Metzlerian and Generalized Metzlerian Matrices: Some Properties and Economic Applications Giorgio Giorgi1 & Cesare Zuccotti1 1 Department of Economics and Management, Via S. Felice, 5 - 27100 Pavia, Italy Correspondence: Giorgio Giorgi, Department of Economics and Management, Via S. Felice, 5 - 27100 Pavia, Italy. E-mail: [email protected] Received: February 19, 2015 Accepted: March 3, 2015 Online Published: March 25, 2015 doi:10.5539/jmr.v7n2p42 URL: http://dx.doi.org/10.5539/jmr.v7n2p42 Abstract In the first part of the paper we consider the main properties, with respect to stability and existence of solutions of multi-sectoral economic models, of Metzlerian and Morishima matrices. In the second part we introduce various generalized Metzlerian matrices, in order to enlarge the results of Ohyama (1972) in the study of stability and comparative statics for a Walrasian-type equlibrium model. Keywords: Metzlerian matrices, Morishima matrices, Walrasian system, stable matrices 1. Introduction Metzlerian matrices or Metzler matrices (in honor of the American economist L. A. Metzler (1913-1980)) are square (real) matrices in which all the off-diagonal elements are nonnegative: ai j = 0; 8i , j: Following the terminology of Fiedler and Ptak´ (1962) we can say that a square matrix A is a Metzlerian matrix if and only if −A 2 Z; where Z is the class of square matrices such that ai j 5 0; 8i , j: Therefore, the relevant properties of Matzlerian matrices can be derived from the “parallel” properties of the Z-matrices, i.
    [Show full text]