Prof. Laron's Publications

Total Page:16

File Type:pdf, Size:1020Kb

Prof. Laron's Publications Prof. laron's publications (for digital or scaned copies, please contact the library) 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. EFFECTS OF PHYSICAL & BIOCHEMICAL CHANGES 1ft GH DEFICIENT PATIENTS (GHD) AFTER INTERRUPTION OF hCH THERAPY AT FINAL HEIGHT AND RETREATMENT IN ADULTHOOD. Hormone Res. 1991;35(Suppl. 2):Abstract 109. – Please contact the medical library for a copy. 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. PREDISPOSITION TO HYPERTENSION AND PERSISTENT MICROALBU- MINUR1A IN TYPE 1 DIABETIC YOUNGSTERS. Hormone Res. 1991;35(Suppl. 2):Abstract 33. – Please contact the medical library for a copy. 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. MODULATION OF 1GF-I RECEPTORS BY hCH TREATMENT OF CONSTITUTIONALLY SHORT CHILDREN (CSS). Hormone Res. 1991;35(Suppl 2):Abstract 146. – Please contact the medical library for a copy. 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. PROLACTIN RESPONSE TO i.v. IGF-1 AND TRH STIMULATION IN LARON TYPE DWARFISM (LTD) PATIENTS’AND CONTROLS. Hormone Res. 1991;35(Suppl. 2):Abstract 147. – Please contact the medical library for a copy. 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. FINAL HEIGHT IN GIRLS WITH CENTRAL PRECOCIOUS PUBERTY (CPP) TREATED WITH THE Gn-RH AGONIST D-TRP-6-LHRH. Hormone Res. 1991;35(Suppl. 2):Abstract 151. – Please contact the medical library for a copy. 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. rIGF-I DEPLETES HYPOTHALAMIC SOMATOSTATIN (SS) AND GHRH STORES AND INHIBITS CH PULSATILE RELEASE IN THE RAT. Hormone Res. 1991;35(Suppl. 2):Abstract 48. – Please contact the medical library for a copy. 30th annual meeting of the European Society for Paediatric Endocrinology (ESPE). Berlin A 25-28 1991. MEASUREMENT OF HUMAN SERUM GROWTH HORMONE BINDING PROTEIN (GHBP) BY RIA COMPARED WITH GEL FILTRATION. Hormone Res. 1991;35(Suppl. 2):Abstract . – Please contact the medical library for a copy. Abramovici A, Josefsberg Ζ, Mimouni M, Liban E, Laron Z. Histopathological Features of the Skin in Hypopituitarism and Laron-Type Dwarfism. Israel Journal of Medical Sciences. 1982;19:515-519. – Please contact the medical library for a copy. Abramovici A, Nevo Z, Stuhlsatz H, Greiling H, Mimouni M, Laron Z. Biochemical and histopathological changes in hypophysectomized rat skin. In: Biochimie Des Tissues Conjonctifs Normaux et Pathologiques. ; 1980:267-272. – Please contact the medical library for a copy. Adler-Bier M, Pertzeland A, Laron Z, Lieberman E, Moses S. Multiple pituitary hormone deficiencies in eight siblings of one Jewish Moroccan family. Acta Paediatr Scand. 1979;68(3):401-404. doi:10.1111/j.1651-2227.1979.tb05027.x. – Please contact the medical library for a copy. Aizenberg D, Hermesh H, Gil-ad I, et al. TRH stimulation test in obsessive-compulsive patients. Psychiatry Res. 1991;38(1):21-26. doi:10.1016/0165-1781(91)90049-u. – Please contact the medical library for a copy. Amir S, Galatzer A, Frish M, Laron Z. A sociological survey of 296 juvenile diabetics. Psychological Aspects of Balance of Diabetes in Juveniles. Pediatric and Adolescent Endocrinology. 1977;3:82-89. – Please contact the medical library for a copy. Amir S, Galatzer A, Karp M, Laron Z. The young diabetic subjects in the Israel army. Diabete et Metabolisme. 1994;20(3):297-302. – Please contact the medical library for a copy. Amir S, Galatzer A, Laron Z. Effects of various occupations on nutrition habits and diabetic management. In: Nutrition and the Diabetic Child. Pediatric & Adolescent Endocrinology. Vol. 7. ; 1979:133-139. – Please contact the medical library for a copy. Amir S, Galatzer A, Laron Z. Psychosocial problems in diabetic children, adolescents and their families. 3rd international ISDG course on update on diabetes in childhood. 1991:97-102. – Please contact the medical library for a copy. Amir S, Kaplan Y, Aran O, Galatzer A. {Psycho-social intervention in the treatment of juvenile diabetes at the clinic, home and community: recent progress in medio-social problem in juvenile diabetes}.‏ Pediatr Adolesc Endocrinol11:97-101;1983‏..‏ – Please contact the medical library for a copy. Amir S, Rabin C, Galatzer A, Laron Z. Interaktionen zwischen medizinischem Team und Patienten bei Diabetikern und ihre Compliance. In: Roth R, Borkenstein HM, eds. Psychosoziale Aspekte in Der Betreuung von Kindern Und Jugendlichen Mit Diabetes: 7. Tagung Des Arbeitskreises “Diabetes Und Psychologie”, Graz, April 1990. S. Karger AG; 1991:127-137. doi:10.1159/000420519– Please contact the medical library for a copy. Ann. Meeting of the Israel Endocrine Society. Effect of oral clonidine and insulin induced hypoglycemia on plasma somatostatin levels in short stature boys. (Abstract). Israel J Med Sci. 1991;(27):356. – Please contact the medical library for a copy. annual meeting of the american endocrine Society P 73rd. Effect of short term therapy with rIGF-l on thyroid function in patients with Laron type dwarfism. proc 73rd annual meeting of the american endocrine society. 1991;June:Abstract 426. – Please contact the medical library for a copy. annual meeting of the american endocrine Society P 73rd. Metabolic changes in GH deficient patients after interruption of hGH treatment at end of puberty and re- institution in adult age. proc 73rd annual meeting of the american endocrine society. 1991;June:Abstract 1309. – Please contact the medical library for a copy. Apter A, Dickerman Z, Gonen N, et al. Effect of chlorpromazine on hypothalamic- pituitary-gonadal function in 10 adolescent schizophrenic boys. Am J Psychiatry. 1983;140(12):1588-1591. doi:10.1176/ajp.140.12.1588.– Please contact the medical library for a copy. Apter A, Galatzer A, Weizman A, Weizman T, Modai I, Laron Z. Psychological aspects of developmental endocrinopathies in adolescence. Israel Journal of Psychiatry and Related Sciences. 1994;31(4):246-253. – Please contact the medical library for a copy. Aran O, Bet-halachmi N, Nofar E, Pertzelan A, Laron Z. {Approach of parents to children with marked short stature — comparison between two families (Hebrew).}. The Family Physician. 1982;11:55-60. – Please contact the medical library for a copy. Aran O, Galatzer A, Kauli R, Nagelberg N, Robicsek Y, Laron Z. Social, educational and vocational status of 48 young adult females with gonadal dysgenesis. Clin Endocrinol (Oxf). 1992;36(4):405-410. doi:10.1111/j.1365-2265.1992.tb01467.x– Please contact the medical library for a copy. Aran O, Laron Z, Galazer A, Nagelberg N, Rubicsek Y. Is short stature a handicap - legal and rehabilitation aspects. In: Limb Lengthening: For Whom, When and How?. ; 1995:131-135. – Please contact the medical library for a copy. Asherov J, Mimouni M, Laron Z. Successful treatment of insulin lipoatrophy. A case report. Diabete Metab. 1979;5(1):1-3. – Please contact the medical library for a copy. Asherov J, Mimouni M, Varsano I, Lubin E, Laron Z. Hepatomegaly due to self induced overinsulinism. Arch Dis Child. 1979;54:148-149. Assa S, Benjamini Y. Insulin antibody assay: a statistical evaluation of sensitivity, precision and reproducibility in healthy subjects. Br J Biomed Sci. 1993;50(2):103- 108. – Please contact the medical library for a copy. Assa S, H M. Elevated serum placental isoferritin in newly diagnosed IDDM patients. A possible marker for identification of high risk subjects. journal of pediatric endocrinology. 1991;4(3):Abstract 25. – Please contact the medical library for a copy. Assa S, Karp M, Erster B, Laron Z. Cytoplasmic islet cell antibodies in type I diabetics in Israel and their first-degree relatives. Israel journal of medical sciences. 1985;21(9):727-730. – Please contact the medical library for a copy. Assa S, Moroz C. Elevated serum placental isoferritin in newly diagnosed type 1 (insulin-dependent) diabetes mellitus. A possible marker for identification of high risk subjects. Diabetologia. 1990;33(9):557-560. doi:10.1007/bf00404144 Assa S, Peleg S, D E, R C, Z L. Lack of anti-idiotypic antibodies in childhood IDDM. J Pediat Endocrinol. 1991;4(3):Abstract 26. – Please contact the medical library for a copy. Assa S, Peleg S, Gafny M, Z.Laron. No anti-idiotypic antibodies to anti-insulin idiotypes in newly diagnosed Type 1 (insulin-dependant) diabetes mellitus. In: Laron Z, Karp M, eds. Genetic and Enviromental Risk Factors for Type I Diabetes (IDDM) Including a Discussion on the Autoimmune Basis1992:119-121.‏ – Please contact the medical library for a copy. Attias J, Negeris B, Zarhi O, Laron Z. Hearing loss in patients with Laron syndrome (primary growth hormone insensitivity) is reversed by early IGF-I replacement therapy (Abstract #P-55). GH and IGF Res. 2008;18(Suppl. 1):S43. – Please contact the medical library for a copy. Attias J, Negeris B, Zarhi O, Z. L. Hearing loss in patients with Laron syndrome (primary growth hormone insensitivity) is reversed by early IGF-I replacement therapy. (Abstract #P1-d3-283). Horm Res. 2008;70(Suppl. 1):84. Attie KM, Bengtsson BA, Blethen SL, et al. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: Summary statement of the GH research society. J Pediatr Endocrinol Metab. 2001;14(4):377-382. – Please contact the medical library for a copy. Attie KM, Bengtsson BA, Blethen SL, et al. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: Summary statement of the GH research society. Journal of Clinical Endocrinology and Metabolism. 2000;85(11):3990-3993. Barel-Graf H, Klinger B, Anin S, Laron Z. Foot length in untreated and GH-treated hereditary GH deficient patients.
Recommended publications
  • Israel Endocrine Society
    Israel Endocrine Society Israel Endocrine Society Conference Browse the program for the upcoming event By Session All Sessions By ID 4 By Day Tuesday By Author Aizic, A. - 31 Now Viewing: All Sessions Note: The presenter's name is in bold Registration Tuesday Morning Date: Tuesday, April 9, 2013 Time: 7:30 AM - 8:00 AM Location: Oral Presentations I: Diabetes, Obesity and Metabolism Date: Tuesday, April 9, 2013 Time: 8:00 AM - 10:00 AM Location: Bareket Hall Session Chair: Benjamin Glaser Session Chair: Hannah Kanety 8:00 AM - AMPK corrects ER morphology and function in stressed pancreatic beta-cells via regulation of the ER resident protein DRP1 (ID: 25) Jakob Wikstrom (Israel) Tal Israeli (Israel) Etty Bachar-Wikstrom (Israel) Yafa Ariav (Israel) Erol Cerasi (Israel) Gil Leibowitz (Israel) 8:15 AM - Paradox In Metabolic Homeostasis: AHNAK Knockout Mice Are Resistant To Diet-Induced Obesity And Yet They Display Reduced Insulin Sensitivity (ID: 47) Maya Ramdas (Israel) Chava Harel (Israel) Natalia Krits (Israel) http://www.xcdsystem.com/ies2013/Program/index.cfm[05/04/2013 11:15:55] Israel Endocrine Society Michal Armoni, Rambam Medical Center (Israel) Eddy Karnieli, Institute of Endocrinology, Metabolism and Diabetes (Israel) 8:30 AM - Neonatal Wolfram syndrome: novel De-novo dominant mutation presenting as an unusual clinical phenotype (ID: 52) Abdulsalam Abu-Libdeh, Hadassah Hebrew University Hospital (Israel) 8:45 AM - Importance of maintaining redox potential balance in the development of type 2 diabetes (ID: 61) Tovit Rosenzweig,
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Update on New GH-IGF Axis Genetic Defects
    review Update on new GH-IGF axis genetic defects Gabriela A. Vasques1,2 1 Unidade de Endocrinologia https://orcid.org/0000-0002-6455-8682 Genética, Laboratório de Endocrinologia Celular e Nathalia L. M. Andrade1,2 https://orcid.org/0000-0002-1628-7881 Molecular (LIM25), Hospital das Clínicas, Faculdade de Fernanda A. Correa2 Medicina, Universidade de São https://orcid.org/0000-0003-2107-9494 Paulo, São Paulo, SP, Brasil 2 Alexander A. L. Jorge1,2 Unidade de Endocrinologia do https://orcid.org/0000-0003-2567-7360 Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de ABSTRACT Medicina, Universidade de São The somatotropic axis is the main hormonal regulator of growth. Growth hormone (GH), also known Paulo, São Paulo, SP, Brasil as somatotropin, and insulin-like growth factor 1 (IGF-1) are the key components of the somatotropic axis. This axis has been studied for a long time and the knowledge of how some molecules could Correspondence to: promote or impair hormones production and action has been growing over the last decade. The Alexander A. L. Jorge Laboratório de Endocrinologia enhancement of large-scale sequencing techniques has expanded the spectrum of known genes and Celular e Molecular (LIM25), several other candidate genes that could affect the GH-IGF1-bone pathway. To date, defects in more Faculdade de Medicina, than forty genes were associated with an impairment of the somatotropic axis. These defects can Universidade de São Paulo Av. Dr. Arnaldo, 455, affect from the secretion of GH to the bioavailability and action of IGF-1. Affected patients present a 5º andar, sala 5.340 large heterogeneous group of conditions associated with growth retardation.
    [Show full text]
  • Genetic Disorder
    Genetic disorder Single gene disorder Prevalence of some single gene disorders[citation needed] A single gene disorder is the result of a single mutated gene. Disorder Prevalence (approximate) There are estimated to be over 4000 human diseases caused Autosomal dominant by single gene defects. Single gene disorders can be passed Familial hypercholesterolemia 1 in 500 on to subsequent generations in several ways. Genomic Polycystic kidney disease 1 in 1250 imprinting and uniparental disomy, however, may affect Hereditary spherocytosis 1 in 5,000 inheritance patterns. The divisions between recessive [2] Marfan syndrome 1 in 4,000 and dominant types are not "hard and fast" although the [3] Huntington disease 1 in 15,000 divisions between autosomal and X-linked types are (since Autosomal recessive the latter types are distinguished purely based on 1 in 625 the chromosomal location of Sickle cell anemia the gene). For example, (African Americans) achondroplasia is typically 1 in 2,000 considered a dominant Cystic fibrosis disorder, but children with two (Caucasians) genes for achondroplasia have a severe skeletal disorder that 1 in 3,000 Tay-Sachs disease achondroplasics could be (American Jews) viewed as carriers of. Sickle- cell anemia is also considered a Phenylketonuria 1 in 12,000 recessive condition, but heterozygous carriers have Mucopolysaccharidoses 1 in 25,000 increased immunity to malaria in early childhood, which could Glycogen storage diseases 1 in 50,000 be described as a related [citation needed] dominant condition. Galactosemia
    [Show full text]
  • Laron Syndrome
    Laron syndrome Description Laron syndrome is a rare form of short stature that results from the body's inability to use growth hormone, a substance produced by the brain's pituitary gland that helps promote growth. Affected individuals are close to normal size at birth, but they experience slow growth from early childhood that results in very short stature. If the condition is not treated, adult males typically reach a maximum height of about 4.5 feet; adult females may be just over 4 feet tall. Other features of untreated Laron syndrome include reduced muscle strength and endurance, low blood sugar levels (hypoglycemia) in infancy, small genitals and delayed puberty, hair that is thin and fragile, and dental abnormalities. Many affected individuals have a distinctive facial appearance, including a protruding forehead, a sunken bridge of the nose (saddle nose), and a blue tint to the whites of the eyes (blue sclerae). Affected individuals have short limbs compared to the size of their torso, as well as small hands and feet. Adults with this condition tend to develop obesity. However, the signs and symptoms of Laron syndrome vary, even among affected members of the same family. Studies suggest that people with Laron syndrome have a significantly reduced risk of cancer and type 2 diabetes. Affected individuals appear to develop these common diseases much less frequently than their unaffected relatives, despite having obesity (a risk factor for both cancer and type 2 diabetes). However, people with Laron syndrome do not seem to have an increased lifespan compared with their unaffected relatives. Frequency Laron syndrome is a rare disorder.
    [Show full text]
  • Blueprint Genetics Comprehensive Growth Disorders / Skeletal
    Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel Test code: MA4301 Is a 374 gene panel that includes assessment of non-coding variants. This panel covers the majority of the genes listed in the Nosology 2015 (PMID: 26394607) and all genes in our Malformation category that cause growth retardation, short stature or skeletal dysplasia and is therefore a powerful diagnostic tool. It is ideal for patients suspected to have a syndromic or an isolated growth disorder or a skeletal dysplasia. About Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders This panel covers a broad spectrum of diseases associated with growth retardation, short stature or skeletal dysplasia. Many of these conditions have overlapping features which can make clinical diagnosis a challenge. Genetic diagnostics is therefore the most efficient way to subtype the diseases and enable individualized treatment and management decisions. Moreover, detection of causative mutations establishes the mode of inheritance in the family which is essential for informed genetic counseling. For additional information regarding the conditions tested on this panel, please refer to the National Organization for Rare Disorders and / or GeneReviews. Availability 4 weeks Gene Set Description Genes in the Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ACAN# Spondyloepimetaphyseal dysplasia, aggrecan type, AD/AR 20 56 Spondyloepiphyseal dysplasia, Kimberley
    [Show full text]
  • Test Requisition Form (Dna & Genetic Tests)
    TEST REQUISITION FORM (DNA & GENETIC TESTS) INCLUDE THE FIRST 3 PAGES OF THIS FORM WITH SPECIMEN. Before sending specimens, please contact us for pre-authorization procedures. Samples received without billing pre-authorization cannot be processed. REPORTING INFORMATION ADDITIONAL REPORTS Ordering Physician or Genetic Counselor Copy of report should be sent to Name: Name: Email: Email: Institution: Fax: ( ) Address: City, State, Zip: Name: Phone: ( ) Email: Fax: ( ) Fax: ( ) PATIENT INFORMATION Patient's Last Name, First Name, MI Birthdate (mm/dd/yyyy) Gender M F Indication or reason for testing (check all that apply) Diagnosis Asymptomatic family member Confirm recorded mutation: High risk population (state Ancestry or Ethnic background below) Prenatal screening Ongoing pregnancy Other: Ancestry or Ethnic Background (check all that apply) Patient's country of origin Ethnic Background Hispanic Jewish Asian Middle-East Americas Europe Africa Australia Hospital or Clinic Patient ID Specimen ID Diagnosis (ICD9 codes) SPECIMEN INFORMATION (REQUIRED) Specimen Date/Time Collected Collected by (initial) Specimen Type (If other, please contact us before shipping) / / _____:_____ AM/PM Buccal Blood Other: Specimen may be submitted as whole blood or buccal epithelial cells (2 swabs / patient). Transport at room temperature. For other specimens and more details, see page labeled "Specimen Requirements". TESTS REQUESTED (Ask us to customize the requisition form for your practice) Test No. Test Name 1. Stat 2. Stat 3. Stat Test Names are found on the list at the end of this form. The tests will be performed in the order listed. Turnaround times are usually less than 5 weeks following receipt of specimen. Sequential panels of several large genes will take longer depending on which gene positive results are found.
    [Show full text]
  • E-Chapter 2.P65
    Chapter 2 / hGH Axis Molecular Mutations 41 II GROWTH 42 Part II / Growth Chapter 2 / hGH Axis Molecular Mutations 43 2 Molecular Mutations in the Human Growth Hormone Axis Zvi Laron, MD CONTENTS INTRODUCTION GROWTH HORMONE RELEASING HORMONE (GHRH) THE GHRH-RECEPTOR (GHRH-R) CONCLUSIONS HUMAN PITUITARY GROWTH HORMONE (hGH) MOLECULAR DEFECTS IN THE HUMAN GH GENE AND HORMONE CONCLUSION THE GROWTH HORMONE RECEPTOR GROWTH HORMONE BINDING PROTEIN (GHBP) MOLECULAR DEFECTS OF THE HUMAN GH RECEPTOR (LARON SYNDROME) DEFECTS OF THE GH-RECEPTOR (GH-R) PARTIAL GROWTH HORMONE INSENSITIVITY (GHI) INSULIN-LIKE GROWTH FACTOR-1 (IGF-1) INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS (IGFBPS) DEFECTS OF THE IGF-1 GENE AND RECEPTOR GENOTYPE-PHENOTYPE RELATIONSHIP ACKNOWLEDGMENT REFERENCES INTRODUCTION Human growth hormone (hGH) is secreted from somatomammotrophic cells in the anterior pituitary in a pulsatile pattern that results from a diurnal rhythmically changing disequilibrium between two hypothalamic hormones: GHRH (GH-releasing hormone) and SMS (somatostatin = GH secretion inhibiting hormone) (1). GHRH induces hGH synthesis and secretion whenever the somatostatinergic tone is low (2). It is thus evident that SMS plays a central role in the regulation of GH secretion. The actions of SMS are not restricted to GH alone, but also affect other hormones, as seen in Fig. 1, which illu- strates the GH cascade. Not illustrated is the inhibitory effect of somatostatin on TSH, From: Contemporary Endocrinology: Developmental Endocrinology: From Research to Clinical Practice Edited by: E. A. Eugster and O. H. Pescovitz © Humana Press Inc., Totowa, NJ 43 44 Part II / Growth Fig. 1. The growth hormone axis. GH, growth hormone; GH-S, GH secretagog; GHRH, GH-releas- ing hormone; IGF-1, insulin-like growth factor-1; GHBP, GH binding protein; IGFBP, insulin-like growth factor; binding proteins; +, stimulates; −, inhibits.
    [Show full text]
  • Laron Syndrome- a Disorder Associated with a Reduced Risk of Cancer: a Review on the Molecular Aspects
    International Journal of Innovative Medicine and Health Science, Volume 12, 2020, 123-132 Laron Syndrome- A Disorder Associated with a Reduced Risk of Cancer: A Review on the Molecular Aspects Ksheera Karumbaiah1, Gopenath TS2, Raghu Nataraj1 and Kanthesh M. Basalingappa1* *1Division of Molecular Biology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, SS Nagara, Mysuru, Karnataka, Pin code: 570015, India 2Division of Biotechnology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, SS Nagara, Mysuru, Karnataka, Pin code: 570015, India ABSTRACT Laron syndrome (LS) or primary growth hormone insensitivity is a genetic disorder known for a type of dwarfism characterized by short stature, facial phenotype, obesity and unexpected high serum GH levels. The disorder is caused due to the mutation of Growth Hormone receptor (GHR) gene whose inability to synthesize IGF-I and other related molecules leads to insulin-like growth factor-1 (IGF-1) deficiency and was first described by Zvi Laron et al., in 1966 as a new type of dwarfism and has garnered interest among genetics and medical fraternities where the LS patients are known to have a lower cancer risk. The review presents the baseline clinical and genetic aspects of the condition along with a broader overview of hypothesized disease presentations of possible protective mechanisms against cancer induction. Keywords: Laron syndrome, Growth hormone receptor, Insulin-like growth factor-1, Dwarfism, Cancer protection Introduction Laron syndrome (LS) or Primary Growth Hormone Insensitivity is a form of genetic syndrome caused by the mutation of Growth Hormone receptor (GHR) gene leading to insulin-like growth factor-1 (IGF-1) deficiency [2].
    [Show full text]
  • A Case with Laron Syndrome
    Case Report DOI: 10.14235/bas.galenos.2018.2385 Bezmialem Science 2019;7(3):251-4 A Case with Laron Syndrome İlker Tolga ÖZGEN1, Esra KUTLU1, Yaşar CESUR1, Gözde YEŞİL2 1Bezmialem Vakıf University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey 2Bezmialem Vakıf University Faculty of Medicine, Department of Medical Genetics, İstanbul, Turkey ABSTRACT Laron syndrome (LS) is a rare disorder leading to short stature as a result of growth hormone (GH) insensitivity. It is caused by mutations in GH receptor gene and characterized by post-natal growth retardation, craniofacial abnormalities, high serum GH and low insulin-like growth factor-I (IGF-I) levels. Several different genetic mutations have been documented up to date. In this article, a patient with LS is reported. A 2-year-old female patient was admitted to the hospital with the complaint of short stature. Her height and weight was 71.7 cm [<3 p., -4.09 standard deviations (SDS)] and 9.7 kg (<3 p., -2.2 SDS) respectively. She had dysmorphic features such as maxillary hypoplasia, blue sclera, small hands and feet, and extreme proportionate shortness. She had a high basal serum GH level (61.879 ng/mL), whereas serum IGF-I (<10 ng/mL) and IGF-binding protein 3 (<0.54 ng/mL) concentrations were significantly low. Both clinical and laboratory measurements were consistent with LS. A missense variation leading to a stop codon (W182X) was determined in GH receptor gene. Recombinant IGF-I therapy improved height z-score from -4.09 to -3.4 SDS after 24-month treatment. In this report, we presented a case with LS.
    [Show full text]