Posttraumatic Cerebral Infarction Diagnosed by CT: Prevalence, Origin, and Outcome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Management of the Head Injury Patient
Management of the Head Injury Patient William Schecter, MD Epidemilogy • 1.6 million head injury patients in the U.S. annually • 250,000 head injury hospital admissions annually • 60,000 deaths • 70-90,000 permanent disability • Estimated cost: $100 billion per year Causes of Brain Injury • Motor Vehicle Accidents • Falls • Anoxic Encephalopathy • Penetrating Trauma • Air Embolus after blast injury • Ischemia • Intracerebral hemorrhage from Htn/aneurysm • Infection • tumor Brain Injury • Primary Brain Injury • Secondary Brain Injury Primary Brain Injury • Focal Brain Injury – Skull Fracture – Epidural Hematoma – Subdural Hematoma – Subarachnoid Hemorrhage – Intracerebral Hematorma – Cerebral Contusion • Diffuse Axonal Injury Fracture at the Base of the Skull Battle’s Sign • Periorbital Hematoma • Battle’s Sign • CSF Rhinorhea • CSF Otorrhea • Hemotympanum • Possible cranial nerve palsy http://health.allrefer.com/pictures-images/ Fracture of maxillary sinus causing CSF Rhinorrhea battles-sign-behind-the-ear.html Skull Fractures Non-depressed vs Depressed Open vs Closed Linear vs Egg Shell Linear and Depressed Normal Depressed http://www.emedicine.com/med/topic2894.htm Temporal Bone Fracture http://www.vh.org/adult/provider/anatomy/ http://www.bartleby.com/107/illus510.html AnatomicVariants/Cardiovascular/Images0300/0386.html Epidural Hematoma http://www.chestjournal.org/cgi/content/full/122/2/699 http://www.bartleby.com/107/illus769.html Epidural Hematoma • Uncommon (<1% of all head injuries, 10% of post traumatic coma patients) • Located -
Effect of Captopril on Post-Infarction Remodelling Visualized by Light
www.nature.com/scientificreports OPEN Efect of captopril on post‑infarction remodelling visualized by light sheet microscopy and echocardiography Urmas Roostalu1*, Louise Thisted1, Jacob Lercke Skytte1, Casper Gravesen Salinas1, Philip Juhl Pedersen1, Jacob Hecksher‑Sørensen1, Bidda Rolin1,3, Henrik H. Hansen1, James G. MacKrell2, Robert M. Christie2, Niels Vrang1, Jacob Jelsing1 & Nora Elisabeth Zois1 Angiotensin converting enzyme inhibitors, among them captopril, improve survival following myocardial infarction (MI). The mechanisms of captopril action remain inadequately understood due to its diverse efects on multiple signalling pathways at diferent time periods following MI. Here we aimed to establish the role of captopril in late‑stage post‑MI remodelling. Left anterior descending artery (LAD) ligation or sham surgery was carried out in male C57BL/6J mice. Seven days post‑surgery LAD ligated mice were allocated to daily vehicle or captopril treatment continued over four weeks. To provide comprehensive characterization of the changes in mouse heart following MI a 3D light sheet imaging method was established together with automated image analysis workfow. The combination of echocardiography and light sheet imaging enabled to assess cardiac function and the underlying morphological changes. We show that delayed captopril treatment does not afect infarct size but prevents left ventricle dilation and hypertrophy, resulting in improved ejection fraction. Quantifcation of lectin perfused blood vessels showed improved vascular density in the infarct border zone in captopril treated mice in comparison to vehicle dosed control mice. These results validate the applicability of combined echocardiographic and light sheet assessment of drug mode of action in preclinical cardiovascular research. Although timely primary coronary percutaneous intervention has substantially improved patient survival post myocardial infarction (MI), the ofen-concomitant cardiac dysfunction and heart failure afect a signifcant num- ber of patients. -
TIA Vs CVA (STROKE)
Phone: 973.334.3443 Email: [email protected] NJPR.com TIA vs CVA (STROKE) What is the difference between a TIA and a stroke? Difference Between TIA and Stroke • Both TIA and stroke are due to poor blood supply to the brain. • Stroke is a medical emergency and it’s a life-threatening condition. • The symptoms of TIA and Stroke may be same but TIA symptoms will recover within 24 hours. TRANSIENT ISCHEMIC ATTACK ● Also known as: TIA, mini stroke 80 E. Ridgewood Avenue, 4th Floor Paramus, NJ 07652 TIA Causes ● A transient ischemic attack has the same origins as that of an ischemic stroke, the most common type of stroke. In an ischemic stroke, a clot blocks the blood supply to part of your brain. In a transient ischemic attack, unlike a stroke, the blockage is brief, and there is no permanent damage. ● The underlying cause of a TIA often is a buildup of cholesterol- containing fatty deposits called plaques (atherosclerosis) in an artery or one of its branches that supplies oxygen and nutrients to your brain. ● Plaques can decrease the blood flow through an artery or lead to the development of a clot. A blood clot moving to an artery that supplies your brain from another part of your body, most commonly from your heart, also may cause a TIA. CEREBROVASCULAR ACCIDENT/STROKE Page 2 When the brain’s blood supply is insufficient, a stroke occurs. Stroke symptoms (for example, slurring of speech or loss of function in an arm or leg) indicate a medical emergency. Without treatment, the brain cells quickly become impaired or die. -
Incomplete Versus Complete Myocardial Infarction
Henry Ford Hospital Medical Journal Volume 39 Number 3 Article 20 9-1991 Incomplete Versus Complete Myocardial Infarction Mihai Gheorghiade Sidney Goldstein Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Gheorghiade, Mihai and Goldstein, Sidney (1991) "Incomplete Versus Complete Myocardial Infarction," Henry Ford Hospital Medical Journal : Vol. 39 : No. 3 , 263-264. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol39/iss3/20 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Incomplete Versus Complete Myocardial Infarction Mihai Gheorghiade, MD,* and Sidney Goldstein, MD* Incomplete myocardial infarction (MI), when compared with a complete Ml. is characterized by a small infarct size and a large mass of viable hut jeopardized myocardium within the perfusion zone of the infarct-related vessel that is manifested ctinicalty hy early recurrent infarction. The pathophysiology involves earty spontaneous or thrombolytic reperfusion. Clinical (i.e., residual ischemia), electrocardiographic, and echocardiographic findings and magnitude of serum cardiac enzyme elevatitms should be taken into account in diagnosing an incomplete Ml. (Heniy Ford Hosp MedJ 1991;39:263-4) he observation that the ischemic event associated with on the ECG may not properly identify patients with incomplete Tthrombotic occlusion of the coronary artery can be inter infarction. rupted with thrombolytic therapy has led to the recognition of a When applied to the individual patient, it is therefore more new ischemic syndrome, the incomplete myocardial infarction useful to divide postinfarction patients, regardless of whether or (MI) (1). -
Endovascular Management of Acute Epidural Hematomas: Clinical Experience with 80 Cases
CLINICAL ARTICLE J Neurosurg 128:1044–1050, 2018 Endovascular management of acute epidural hematomas: clinical experience with 80 cases Carlos Michel A. Peres, MD,1 Jose Guilherme M. P. Caldas, MD, PhD,2 Paulo Puglia Jr., MD,2 Almir F. de Andrade, MD, PhD,3 Igor A. F. da Silva, MD,3 Manoel J. Teixeira, MD, PhD,3 and Eberval G. Figueiredo, MD, PhD3 1Hospital Universitário Francisca Mendes, Manaus; and Divisions of 2Neuroradiology and 3Neurosurgery, University of São Paulo School of Medicine, São Paulo, Brazil OBJECTIVE Small acute epidural hematomas (EDHs) treated conservatively carry a nonmeasurable risk of late en- largement due to middle meningeal artery (MMA) lesions. Patients with EDHs need to stay hospitalized for several days, with neurological supervision and repeated CT scans. In this study, the authors analyzed the safety and efficacy of the embolization of the involved MMA and associated lesions. METHODS The study group consisted of 80 consecutive patients harboring small- to medium-sized EDHs treated by MMA embolization between January 2010 and December 2014. A literature review cohort was used as a control group. RESULTS The causes of head injury were falls, traffic-related accidents (including car, motorcycle, and pedestrian vs vehicle accidents), and assaults. The EDH topography was mainly temporal (lateral or pole). Active contrast leaking from the MMA was seen in 57.5%; arteriovenous fistulas between the MMA and diploic veins were seen in 10%; and MMA pseudoaneurysms were found in 13.6% of the cases. Embolizations were performed under local anesthesia in 80% of the cases, with N-butyl-2-cyanoacrylate, polyvinyl alcohol particles, or gelatin sponge (or a combination of these), obtaining MMA occlusion and complete resolution of the vascular lesions. -
Spontaneous Cervical Spinal Epidural Hematoma
CASE REPORT Spontaneous Cervical Spinal Epidural Hematoma Katie Rinne, MBBS; Sunil Gopisetty, MRCEM A 68-year-old woman presented with sudden-onset right arm and leg weakness, as well as right-sided neck pain. nilateral weakness is a common ED and was a nonsmoker with a normal body presentation with a diverse etiology, mass index. Her family history was signifi- including stroke.1,2 Studies have re- cant for cerebral vascular accidents. U ported a misdiagnosis rate of stroke On arrival at the ED, the patient had a and transient ischemic attack of approxi- blood pressure of 179/95 mm Hg; her other mately 10%.3 This case presents an un- vital signs were normal. On examination, usual stroke mimic where treatment with she had a right-sided hemiplegia, with a 0/5 an anticoagulant could have led to adverse power grading observed for motor strength outcomes. It also highlights the importance for both her right arm and leg. She reported of considering a spontaneous cervical spi- paresthesia in dermatomes C4 to C5 and L3 to nal epidural hematoma (SCSEH) as a stroke L5. There was extreme tenderness when her mimic. This is especially pertinent when a right trapezius and upper paraspinal muscles patient’s symptoms are not fully consistent were palpated, but she had no midline cer- with an acute stroke, in order to avoid po- vical spine tenderness and had full, though tentially dangerous anticoagulation and al- painful, range of movement of her neck. Her low for prompt treatment of the hematoma. left side was unaffected. She had normal cra- nial nerves, no higher cortical dysfunction, a Case Glasgow Coma Scale (GCS) score of 15, and A 68-year-old woman presented to the ED via complete control of her bladder and bowel. -
Intracranial Hemorrhage
Intracranial Hemorrhage MARK MOSS, M.D. INTERVENTIONAL NEURORADIOLOGY WASHINGTON REGIONAL MEDICAL CENTER Definitions Stroke Clinical syndrome of rapid onset deficits of brain function lasting more than 24 hours or leading to death Transient Ischemic attack (TIA) Clinical syndrome of rapid onset deficits of brain function which resolves within 24 hours Epidemiology Stroke is the leading cause of adult disabilities 2nd leading cause of death worldwide 3rd leading cause of death in the U.S. 800,000 strokes per year resulting in 150,000 deaths Deaths are projected to increase exponentially in the next 30 years owing to the aging population The annual cost of stroke in the U.S. is estimated at $69 billion Stroke can be divided into hemorrhagic and ischemic origins 13% hemorrhagic 87% ischemic Intracranial Hemorrhage Collective term encompassing many different conditions characterized by the extravascular accumulation of blood within different intracranial spaces. OBJECTIVES: Define types of ICH Discuss best imaging modalities Subarachnoid hemorrhage / Aneurysms Roles of endovascular surgery Intracranial hemorrhage Outside the brain (Extra-axial) hemorrhage Subdural hematoma (SDH) Epidural hematoma (EDH) Subarachnoid hematoma (SAH) Intraventricular (IVH) Inside the brain (Intra-axial) hemorrhage Intraparenchymal hematoma (basal ganglia, lobar, pontine etc.) Your heads compartments Scalp Subgaleal Space Bone (calvarium) Dura Mater thick tough membrane Arachnoid flimsy transparent membrane Pia Mater tightly hugs the -
Traumatic Brain Injury in Boxing and Mixed Martial Arts Dr
TRAUMATIC BRAIN INJURY IN BOXING AND MIXED MARTIAL ARTS DR. DOMENIC F COLETTA,JR. CHIEF RINGSIDE PHYSICIAN NEW JERSEY STATE ATHLETIC CONTROL BOARD ACUTE TRAUMATIC BRAIN INJURY (ATBI) • DIFFUSE BRAIN INJURY - Diffuse axonal injury (KO) - Cerebral concussion - Second Impact Syndrome • FOCAL BRAIN INJURY - Subdural and epidural hemorrhage - Cerebral contusion - Other cerebral hemorrhages (rare) COMMON SIGNS AND SYMPTOMS OF ATBI • Cognitive features - Decreased speed of information processing - Confusion/ Disorientation - Amnesia/ Memory impairment - Impaired concentration - Loss of consciousness • Behavioral features - Irritability/ Anxiety - Sleep disturbance - Fatigue/ Apathy/ Psychomotor retardation - Easily distracted • Physical features - Headache/ Dizziness - Nausea - Impaired coordination/ ataxic gait - Visual disturbances - Vacant stare - Seizure PATHOPHYSIOLOGY OF BRAIN INJURY IN BOXING Three types of stresses to the brain. 1. Compressive 2. Stretching (tensile) 3. Shearing – the most dangerous HEAD BLOWS • Rotational (angular) acceleration – blows to the side of the head or to the chin that produce the greatest shearing forces causing direct neuronal and vascular damage, either focal or diffuse. • Translational (linear) acceleration – jabs to the face that are less dangerous but still can account for coup – contrecoup injury to the brain. • Impact deceleration – occurs when head strikes the mat after a KO and may cause an additional traumatic brain injury. CONCUSSION • A complex pathophysiologic process that affects the brain and is induced by traumatic biomechanical forces. • Typically it is a rapid onset of short-lived impairment of neurological function that resolves spontaneously (although a small percentage will have prolonged post- concussion symptoms. • It is difficult to diagnose during a boxing match because most concussions are not associated with LOC and, a fighter who gets KO’d may or may not be concussed. -
Spontaneous Cervical Epidural Hematoma Mimicking Acute Ischemic Stroke
Published Ahead of Print on August 4, 2020 as 10.1212/WNL.0000000000010511 Rahangdale 1 Neurology Publish Ahead of Print DOI: 10.1212/WNL.0000000000010511 Spontaneous cervical epidural hematoma mimicking acute ischemic stroke Rahul Rahangdale, MD1, John Coburn, MD2, Christopher Streib, MD1 1 Department of Neurology, University of Minnesota, Minneapolis MN 2 Division of Neuroradiology, Midwest Radiology PA, St. Paul, MN Corresponding author: Rahul Rahangdale, Email: [email protected] Title character count: 70 Abstract word count: 0 Manuscript word count: 100 Legends word count: 50 References: 2 Figures: 2 Neurology® PublishedACCEPTED Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes. Copyright © 2020 American Academy of Neurology. Unauthorized reproduction of this article is prohibited Rahangdale 2 Keywords: Spontaneous cervical spinal epidural hematoma, Stroke mimics, IV tPA Disclosure: R.Rahangdale. reports no disclosures relevant to the manuscript; J.Coburn. reports no disclosures relevant to the manuscript; C.Streib. reports no disclosures relevant to the manuscript. Study funding: No targeted funding reported. Manuscript: A 67-year-old male presented with acute right hemiparesis and hemianesthesia (NIHSS 5). Hyperacute neuroimaging was interpreted as normal. Following IV tPA, his symptoms worsened with concern for cervical radiculopathy. Upon reviewing the CT angiogram (CTA), a possible spinal epidural hematoma (EDH) was noted and subsequently confirmed with MRI (figure 1). Cryoprecipitate was administered. His symptoms gradually improved with conservative management. Spontaneous spinal EDH is rare (incidence: 0.1/100,000 per year).1 Risk factors include hypertension and 1 ACCEPTED2 coagulopathy. -
Spontaneous Cervical Epidural Hematoma: Case Report
Spinal Cord (1998) 36, 71 ± 72 1998 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/98 $12.00 Spontaneous cervical epidural hematoma: case report Adnan Awada1, Neville Russell2, Naif Al Fayez2, Richard Naufal3 and Hussein Al Kohlani2 Sections of 1Neurology and 2Neurosurgery and 3Department of Medical Imaging, King Fahd National Guard Hospital, POB 22490, Riyadh 11426, Saudi Arabia Spontaneous spinal epidural hematoma (SSEH) is an uncommon cause of acute nontraumatic myelopathy. We report a 14 year-old boy who had tetraplegia on awakening. Diagnosis of spinal epidural hematoma was made by magnetic resonance imaging. Despite spinal cord decompression within 9 h from onset, he remained tetraplegic. No cause for the bleeding was found. The pathogenic hypotheses of SSEH are discussed and the importance of rapid diagnosis and treatment is emphasized. Keywords: spinal cord; epidural hematoma; magnetic resonance imaging (MRI); acute myelopathy; tetraplegia Introduction Spinal epidural hematoma is a very rare cause of acute stimulation. Urinary retention and priapism were spinal cord compression. It is important to recognize it present. An acute cervical spinal cord disorder was since early diagnosis and prompt surgical evacuation suspected and an urgent magnetic resonance imaging provide the maximum chance of functional recovery. (MRI) examination ordered. This was performed at Spinal epidural hematoma has been reported in 3 pm and on T1 and T2-weighted images, revealed an association with blood dyscrasias, coagulopathies, iso-intense mass, centered at the level of C6 (a `double anti-coagulant treatment, infection, tumor, pregnancy cord' image) (Figure 1). This was compressing the and vascular malformations, but approximately half of dorsal aspect of the spinal cord. -
ST-Elevation Myocardial Infarction Due to Acute Thrombosis in an Adolescent with COVID-19
Prepublication Release ST-Elevation Myocardial Infarction Due to Acute Thrombosis in an Adolescent With COVID-19 Jessica Persson, MD, Michael Shorofsky, MD, Ryan Leahy, MD, MS, Richard Friesen, MD, Amber Khanna, MD, MS, Lyndsey Cole, MD, John S. Kim, MD, MS DOI: 10.1542/peds.2020-049793 Journal: Pediatrics Article Type: Case Report Citation: Persson J, Shorofsky M, Leahy R, et al. ST-elevation myocardial infarction due to acute thrombosis in an adolescent with COVID-19. Pediatrics. 2021; doi: 10.1542/peds.2020- 049793 This is a prepublication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version. Downloaded from©202 www.aappublications.org/news1 American Academy by of guest Pediatrics on September 27, 2021 Prepublication Release ST-Elevation Myocardial Infarction Due to Acute Thrombosis in an Adolescent With COVID-19 Jessica Persson, MD1, Michael Shorofsky, MD1, Ryan Leahy, MD, MS1, Richard Friesen, MD1, Amber Khanna, MD, MS1,2, Lyndsey Cole, MD3, John S. Kim, MD, MS1 1Division of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 2Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 3Section of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado Corresponding Author: John S. -
Myocardial Infarction Does Not Accelerate Atherosclerosis in a Mouse Model of Type 1 Diabetes
Diabetes Volume 69, October 2020 2133 Myocardial Infarction Does Not Accelerate Atherosclerosis in a Mouse Model of Type 1 Diabetes Farah Kramer,1 Amy M. Martinson,2 Thalia Papayannopoulou,3 and Jenny E. Kanter1 Diabetes 2020;69:2133–2143 | https://doi.org/10.2337/db20-0152 In addition to increasing the risk of an initial myocardial observed in response to the acute ischemic event was pos- infarction (MI), diabetes increases the risk of a recur- tulated to be driven by enhanced extramedullary hemato- rent MI. Previous work suggests that an experimental poiesis resulting in increased levels of circulating monocytes MI can accelerate atherosclerosis via monocytosis. To available for recruitment into the nascent atherosclerotic test whether diabetes and experimental MI synergize to lesion, thereby accelerating atherosclerosis (9). accelerate atherosclerosis, we performed ligation of Diabetes accelerates atherosclerosis lesion initiation and the left anterior descending coronary artery to induce progression and hinders lesion regression in response to experimental MI or sham surgery in nondiabetic and dramatic lipid lowering (10–13). Changes in monocyte and diabetic mice with preexisting atherosclerosis. All mice macrophage phenotype are believed to contribute to the COMPLICATIONS fi subjected to experimental MI had signi cantly reduced acceleration of atherosclerosis in diabetes. In both mouse left ventricular function. In our model, in comparisons and human studies, diabetes results in increased macro- with nondiabetic sham mice, neither diabetes nor MI phage accumulation within the artery wall (10,14,15). For resulted in monocytosis. Neither diabetes nor MI led to example, autopsy and atherectomy samples from humans increased atherosclerotic lesion size, but diabetes ac- celerated lesion progression, exemplified by necrotic have shown that lesions from subjects with diabetes have core expansion.