Cover Page Title Vestibulospinal circuits and the development of balance in fish Authors Yunlu Zhu, Kyla R. Hamling, David Schoppik Affiliation Department of Otolaryngology, Department of Neuroscience & Physiology, and the Neuroscience Institute, New York University School of Medicine, New York, United States; Contact Information Yunlu Zhu Address: 435 E 30th st, Rm 1145R, New York, NY 10016, United States. Email:
[email protected] Phone: 434-242-7311 Kyla R. Hamling Address: 435 E 30th st, Rm 1138, New York, NY 10016, United States. Email:
[email protected] Phone: 707-853-7689 David Schoppik Address: 435 E 30th st, Rm 1103, New York, NY 10016, United States. Email:
[email protected] Phone: 646-501-4555 Keywords Balance; Hindbrain; Inner ear; Lamprey; Locomotion; Magnocellular; Neural circuit; Octavomotor; Otolith; Teleost; Vestibular; Vestibulospinal; Zebrafish Synopsis The ability to maintain balance and adjust posture through reflexive motor control is vital for animal locomotion. The vestibulospinal nucleus residing in the hindbrain is responsible for relaying inner ear vestibular information to spinal motoneurons and is remarkably conserved from fish to higher vertebrates. Taking the advantage of relatively simple body plan and locomotor behavior, studies in fish have significantly contributed to our understanding of the of the anatomy, connectivity, and function of the vestibulospinal circuits and the development of balance control. Abstract During locomotion, animals engage reflexive motor control to adjust posture and maintain balance. The vestibulospinal nucleus responsible for transmitting vestibular information to the spinal cord is vital for corrective postural adjustments and is remarkably conserved from fish to higher vertebrates. However, little is known about how the vestibulospinal circuitry contributes to balance control.