Algae and the Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Morphological and Phylogenetic Study of the Genus Chondria (Rhodomelaceae, Rhodophyta)
Title A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) Author(s) Sutti, Suttikarn Citation 北海道大学. 博士(理学) 甲第13264号 Issue Date 2018-06-29 DOI 10.14943/doctoral.k13264 Doc URL http://hdl.handle.net/2115/71176 Type theses (doctoral) File Information Suttikarn_Sutti.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) 【紅藻ヤナギノリ属(フジマツモ科)の形態学的および系統学的研究】 Suttikarn Sutti Department of Natural History Sciences, Graduate School of Science Hokkaido University June 2018 1 CONTENTS Abstract…………………………………………………………………………………….2 Acknowledgement………………………………………………………………………….5 General Introduction………………………………………………………………………..7 Chapter 1. Morphology and molecular phylogeny of the genus Chondria based on Japanese specimens……………………………………………………………………….14 Introduction Materials and Methods Results and Discussions Chapter 2. Neochondria gen. nov., a segregate of Chondria including N. ammophila sp. nov. and N. nidifica comb. nov………………………………………………………...39 Introduction Materials and Methods Results Discussions Conclusion Chapter 3. Yanagi nori—the Japanese Chondria dasyphylla including a new species and a probable new record of Chondria from Japan………………………………………51 Introduction Materials and Methods Results Discussions Conclusion References………………………………………………………………………………...66 Tables and Figures 2 ABSTRACT The red algal tribe Chondrieae F. Schmitz & Falkenberg (Rhodomelaceae, Rhodophyta) currently -
Ultrastructural and Transcriptome Changes of Free-Living Sporangial Filaments in Pyropia Yezoensis Affected by Light and Culture
Ultrastructural and transcriptome changes of free-living sporangial filaments in Pyropia yezoensis affected by light and culture density Bangxiang He1, Xiujun Xie1, and Guangce Wang1 1Institute of Oceanology, Chinese Academy of Sciences April 28, 2020 Abstract In the life cycle of Pyropia yezoensis, sporangial filaments connect conchocelis and thallus, but the mechanisms of maturation and conchospore release of sporangial filaments are poorly understood. We found that the morphological change from vegetative growth form (hollow cells) to reproductive form (bipartite cells), and the release of conchospores from bipartite cells were all closely correlated with culture density and light intensity. Bipartite cells formed at low density (50{1,000 fragments/mL) and when stimulated by high light levels (40{100 mmol photons m-2 s-1), but conchospore release was inhibited at such light intensities. At high densities (5,000{10,000 fragments/mL), sporangial filaments retained the hollow cell morphology and rarely formed bipartite cells. Ultrastructural observation showed that the degradation of autophagosome-like structures in vacuoles caused the typical hollow form. Transcriptome analysis indicated that adaptive responses to environmental changes, mainly autophagy, endocytosis and phosphatidylinositol metabolism, caused the morphological transformation of free-living sporangial filaments. Meanwhile, the extensive promotion of energy accumulation under high light levels promoted vegetative growth of sporangial filaments, and thus inhibited conchospore release from bipartite cells. These results provide a theoretical basis for maturation of sporangial filaments and release of conchospores in P. yezoensis and other related species. Main text Ultrastructural and transcriptome changes of free-living sporangial filaments in Pyropia yezoensis affected by light and culture density Abstract In the life cycle of Pyropia yezoensis , sporangial filaments connect conchocelis and thallus, but the mecha- nisms of maturation and conchospore release of sporangial filaments are poorly understood. -
Picophytoplankton Biomass Distribution in the Global Ocean
CMYK RGB History of Geo- and Space Open Access Open Sciences Advances in Science & Research Open Access Proceedings Drinking Water Drinking Water Engineering and Science Engineering and Science Open Access Access Open Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Discussions Earth Syst. Sci. Data Discuss., 5, 221–242, Earth 2012 System Earth System www.earth-syst-sci-data-discuss.net/5/221/2012/ Science Science doi:10.5194/essdd-5-221-2012 ESSDD © Author(s) 2012. CC Attribution 3.0 License. 5, 221–242, 2012 Open Access Open Open Access Open Data Data This discussion paper is/has been under review for the journal Earth System Science Discussions Picophytoplankton Data (ESSD). Please refer to the corresponding final paper in ESSD if available. Social Social biomass distribution in the global ocean Open Access Open Geography Open Access Open Geography Picophytoplankton biomass distribution E. T. Buitenhuis et al. in the global ocean Title Page E. T. Buitenhuis1, W. K. W. Li2, D. Vaulot3, M. W. Lomas4, M. Landry5, F. Partensky3, D. M. Karl6, O. Ulloa7, L. Campbell8, S. Jacquet9, F. Lantoine10, Abstract Instruments F. Chavez11, D. Macias12, M. Gosselin13, and G. B. McManus14 Data Provenance & Structure 1Tyndall Centre for Climate Change Research and School of Environmental Sciences, Tables Figures University of East Anglia, Norwich NR4 7TJ, UK 2Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada J I 3UMR 7144 (CNRS and UPMC, Paris 06), Station Biologique, 29680 -
Coexistence of Phycoerythrin and a Chlorophyll A/B Antenna in a Marine Prokaryote (Prochlorophyta/Cyanobacteria/Phycobilins/Photosynthesis/Endosymbiosis) WOLFGANG R
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11126-11130, October 1996 Microbiology Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote (Prochlorophyta/cyanobacteria/phycobilins/photosynthesis/endosymbiosis) WOLFGANG R. HESs*t, FREDEIRIC PARTENSKYt, GEORG W. M. VAN DER STAAYI, JOSE' M. GARCIA-FERNANDEZt, THOMAS BORNER*, AND DANIEL VAULOTt *Department of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany; and tStation Biologique de Roscoff, Centre National de la Recherche Scientifique Unite Propre de Recherche 9042 and Universite Pierre et Marie Curie, BP 74, F-29682 Roscoff Cedex, France Communicated by Hewson Swift, The University of Chicago, Chicago, IL, July 1Z 1996 (received for review June 7, 1996) ABSTRACT Prochlorococcus marinus CCMP 1375, a ubiq- tation maximum of the major chromophore bound by PE-III uitous and ecologically important marine prochlorophyte, corresponds to that of phycourobilin. was found to possess functional genes coding for the a and 1 subunits of a phycobiliprotein. The latter is similar to phy- coerythrins (PE) from marine Synechococcus cyanobacteria MATERIALS AND METHODS and bind a phycourobilin-like pigment as the major chro- Flow Cytometric Measurements. Sea water samples were mophore. However, differences in the sequences of the ca and collected at different depths during the France-Joint Global 13 chains compared with known PE subunits and the presence Ocean Flux Study OLIPAC cruise held in November 1994 of a single bilin attachment site on the a subunit designate it aboard the N.O. l'Atalante. Samples were analyzed immedi- as a novel PE type, which we propose naming PE-III. P. ately using a FACScan (Becton Dickinson) flow cytometer and marinus is the sole prokaryotic organism known so far that cell concentrations of Prochlorococcus and Synechococcus contains chlorophylls a and b as well as phycobilins. -
Transfer of Nuclei Froma Parasite to Its Host
Proc. Natl. Acad. Sci. USA Vol. 81, pp. 5420-5424, September 1984 Botany Transfer of nuclei from a parasite to its host (Polysiphonia/Choreocolax/microspectrofluorometry) LYNDA J. GOFF* AND ANNETTE W. COLEMANt *Center for Coastal Marine Science and Department of Biology, University of California, Santa Cruz, CA 95064; and tDivision of Biology and Medicine, Brown University, Providence, RI 02912 Communicated by Kenneth V. Thimann, April 27, 1984 ABSTRACT During the normal course of infection, nuclei are transferred via secondary pit connections from the parasit- ic marine red alga Choreocolax to its red algal host Polysi- phonia. These "planetic" nuclei are transmitted by being cut off into specialized cells (conjunctor cells) that fuse with an adjacent host cell, thereby delivering parasite nuclei and other cytoplasmic organelles into host cell cytoplasm. Within the for- eign cytoplasm, planetic nuclei survive for several weeks and may be active in directing the host cellular responses to infec- tion, since these responses are seen only in host cells containing planetic nuclei. The transfer and long-term survival ofa nucle- us from one genus into the cytoplasm of another through mechanisms that have evolved in nature challenge our under- standing of nuclear-cytoplasmic interactions and our concept of "individual." Parasitic organisms have evolved many specialized mecha- nisms for invading their hosts. However, no example yet has been reported of the regular introduction of nuclei of a para- site into cytoplasm of living cells of its host, leading to modi- fication of the metabolism of the host cell to the benefit of the parasite. Such an interaction would presumably require a most intimate coordination of host and parasite metabolism. -
Prochlorophyta: a Sub-Class of Chlorophyta
PROCHLOROPHYTA: A SUB-CLASS OF CHLOROPHYTA Prochlorophyta are a photosynthetic prokaryote members of the phytoplankton group Picoplankton. These oligotrophic organisms are abundant in nutrient-poor tropical waters and use a unique photosynthetic pigment, divinyl-chlorophyll, to absorb light and acquire energy. These organisms lack red and blue Phycobilin pigments and have staked thylakoids, both of which make them different from Cyanophyta. Prochlorophyta were initially discovered in 1975 near the Great Barrier Reef and off the coast of Mexico. The following year, Ralph A. Lewin, of the Scripps Institution of Oceanography, assigned them as a new algal sub-class. Prochlorophytes are very small microbes generally between 0.2 and 2 µm (Photosynthetic picoplankton). They morphologically resemble Cyanobacteria, Members of Prochlorophyta have been found as coccoid (spherical) shapes, like Prochlorococcus, and as filaments, like Prochlorothrix. In addition to Prochlorophyta, other phytoplankton that lack Phycobilin pigments were later found in freshwater lakes in the Netherlands, by Tineke Burger-Wiersma. These organisms were termed Prochlorothrix. Prochloron (a marine symbiont) and Prochlorothrix (from freshwater plankton) contain chlorophylls a and b; Prochlorococcus (common in marine picoplankton) contains divinyl-chlorophylls a and b. In 1986, Prochlorococcus was discovered by Sallie W. Chisholm and his colleagues. These organisms might be responsible for a significant portion of the global primary production. Like cyanophytes they are all clearly photosynthetic prokaryotes, but since they contain no blue or red bilin pigment they were assigned to a new algal sub- class, the Prochlorophyta. However, since their possible phylogenetic relationships to ancestral green-plant chloroplasts have not received support from molecular biology, it now seems expedient to consider them as aberrant cyanophytes. -
758 the Ultrastructure of an Alloparasitic Red Alga Choreocolax
PHYCOLOGIA 12(3/4) 1973 The ultrastructure of an alloparasitic red alga Choreocolax polysiphoniae I PAUL KUGRENS Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado 80521, U.S.A. AND JOHN A. WEST Department of Botany, University of California, Berkeley, California 94720, U.S.A. Accepted June 18, 1973 An alloparasite, Choreocolax polysipiloniae, apparently represents one of the most evolved parasitic red algae. Chlo�oplasts are highly redu�ed and consist of dOl!ble membrane limited organelles lacking any inter nal thylako!� developmen!. The unInucleate cells have thick walls, an absence of starch in cortical cells and larg� quantIties of starch In meduII ary cells. Host-para�ite connections are made by typical red algal pit con . nectIOns. G.eneral effects of t�e InfectIOn on the host .Include cell hypertrophy, decrease in floridean starch granules, dispersed cytoplasmiC matrIces, and contorsJOn of chloroplasts. Phycologia, 12(3/4): 175-186, 1973 Introduction of the host, Cryptopleura. Her decision was The paraSItIc red algae constitute a unique based on the similarity in reproductive struc 1?irou of organisms about which surprisingly tures between the host and parasite, and she � suggested bacteria as causal agents for such lIttle IS known, although their distinctive nature . has been recognized since the late nineteenth proliferatIons. Chemin (1937) also indicated century. There are approximately 40 genera, that bacteria might be causal agents since bac unknown numbers of species, and all are ex teria were isolated from surface-sterilized thalli clusively florideophycean, belonging to all of Callocolax neglectus. Observations on Lobo orders except the Nemaliales. -
Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution. -
Draft Genome of Prochlorothrix Hollandica CCAP 1490/1T
Velichko et al. Standards in Genomic Sciences (2016) 11:82 DOI 10.1186/s40793-016-0204-4 SHORT GENOME REPORT Open Access Draft genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027), the chlorophyll a/b-containing filamentous cyanobacterium Natalia Velichko1*, Mikhail Rayko2*, Ekaterina Chernyaeva3, Alla Lapidus3 and Alexander Pinevich1 Abstract Prochlorothrix hollandica is filamentous non-heterocystous cyanobacterium which possesses the chlorophyll a/b light-harvesting complexes. Despite the growing interest in unusual green-pigmented cyanobacteria (prochlorophytes) to date only a few sequenced genome from prochlorophytes genera have been reported. This study sequenced the genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027). The produced draft genome assembly (5.5 Mb) contains 3737 protein-coding genes and 114 RNA genes. Keywords: Cyanobacteria, Prochlorophytes, Prochlorothrix hollandica, Comparative genomics Introduction The genus Prochlorothrix is represented by two cul- The majority of cyanobacteria use chl a as a sole magne- tivable free-living species: Prochlorothrix hollandica sium tetrapyrrole and common phycobilisome function- and Prochlorothrix scandica,aswellasanumberof ing as the bulk LHC. The prochlorophytes are a unique unculturable strains, originating from environmental pigment subgroup of phylum Cyanobacteria – besides 16S rRNA sequences [6]. The distinction between P. chl a, they contain other chls (b; 2,4-divinyl a; 2,4-divi- hollandica and P. scandica is predominantly based on nyl b; f; g) as antennal pigments and simultaneously do the molecular-genetic characters: DNA reassociation not depend on the PBP-containing photoreceptors [1]. less than 30 % and DNA GC mol% content difference Prochlorophytes demonstrating these outgroup features more than 5 % [5]. are few and encompass three marine unicellular genera P. -
Red Algal Parasites: Models for a Life History Evolution That Leaves Photosynthesis Behind Again and Again
Prospects & Overviews Review essays Red algal parasites: Models for a life history evolution that leaves photosynthesis behind again and again Nicolas A. Blouinà and Christopher E. Lane Many of the most virulent and problematic eukaryotic Introduction pathogens have evolved from photosynthetic ancestors, such as apicomplexans, which are responsible for a Parasitology is one of the oldest fields of medical research and continues to be an essential area of study on organisms wide range of diseases including malaria and toxoplas- that kill millions annually, either directly or through mosis. The primary barrier to understanding the early agricultural loss. In the early genomics era, parasites were stages of evolution of these parasites has been the diffi- some of the initial eukaryotes to have their genomes culty in finding parasites with closely related free-living sequenced. The combination of medical interest and small lineages with which to make comparisons. Parasites genome size (due to genome compaction [1]) has resulted found throughout the florideophyte red algal lineage, in a relatively large number of sequenced genomes from these taxa. The range of relationships that exist between however, provide a unique and powerful model to inves- parasites and comparative free-living taxa, however, compli- tigate the genetic origins of a parasitic lifestyle. This is cates understanding the evolution of eukaryotic parasitism. because they share a recent common ancestor with an In some cases (such as apicomplexans, which cause extant free-living red algal species and parasitism has malaria, cryptosporidiosis and toxoplasmosis, among other independently arisen over 100 times within this group. diseases) entire lineages appear to have a common parasitic ancestor [2]. -
Are All Red Algal Parasites Cut from the Same Cloth?
Acta Societatis Botanicorum Poloniae INVITED REVIEW Acta Soc Bot Pol 83(4):369–375 DOI: 10.5586/asbp.2014.047 Received: 2014-11-21 Accepted: 2014-12-12 Published electronically: 2014-12-31 Are all red algal parasites cut from the same cloth? Eric D. Salomaki*, Christopher E. Lane Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA Abstract Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organ- ism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. This is largely because few systems present the opportunity to make meaningful comparisons between a parasite and a close free-living relative. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversify and infect more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Elegant microscopic work in the late 20th cen- tury provided detailed insight into the infection cycle of red algal parasites and the cellular interactions between parasites and their hosts. Those studies led to the use of molecular work to further investigate the origins of the parasite organelles and reveal the evolutionary relationships between hosts and their parasites. Here we synthesize the research detailing the infection methods and cellular interactions between red algal parasites and their hosts. -
(Cyanobacterial Genera) 2014, Using a Polyphasic Approach
Preslia 86: 295–335, 2014 295 Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Taxonomické hodnocení cyanoprokaryot (cyanobakteriální rody) v roce 2014 podle polyfázického přístupu Jiří K o m á r e k1,2,JanKaštovský2, Jan M a r e š1,2 & Jeffrey R. J o h a n s e n2,3 1Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; 3Department of Biology, John Carroll University, University Heights, Cleveland, OH 44118, USA Komárek J., Kaštovský J., Mareš J. & Johansen J. R. (2014): Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. – Preslia 86: 295–335. The whole classification of cyanobacteria (species, genera, families, orders) has undergone exten- sive restructuring and revision in recent years with the advent of phylogenetic analyses based on molecular sequence data. Several recent revisionary and monographic works initiated a revision and it is anticipated there will be further changes in the future. However, with the completion of the monographic series on the Cyanobacteria in Süsswasserflora von Mitteleuropa, and the recent flurry of taxonomic papers describing new genera, it seems expedient that a summary of the modern taxonomic system for cyanobacteria should be published. In this review, we present the status of all currently used families of cyanobacteria, review the results of molecular taxonomic studies, descriptions and characteristics of new orders and new families and the elevation of a few subfamilies to family level.