LSD1 Cooperates with Noncanonical NF-Κb Signaling to Regulate Marginal Zone B Cell Development

Total Page:16

File Type:pdf, Size:1020Kb

LSD1 Cooperates with Noncanonical NF-Κb Signaling to Regulate Marginal Zone B Cell Development LSD1 Cooperates with Noncanonical NF-κB Signaling to Regulate Marginal Zone B Cell Development This information is current as Robert R. Haines, Christopher D. Scharer, Jenna L. Lobby of October 2, 2021. and Jeremy M. Boss J Immunol published online 6 September 2019 http://www.jimmunol.org/content/early/2019/08/30/jimmun ol.1900654 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/08/30/jimmunol.190065 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 6, 2019, doi:10.4049/jimmunol.1900654 The Journal of Immunology LSD1 Cooperates with Noncanonical NF-kB Signaling to Regulate Marginal Zone B Cell Development Robert R. Haines, Christopher D. Scharer, Jenna L. Lobby, and Jeremy M. Boss Marginal zone B cells (MZB) are a mature B cell subset that rapidly respond to blood-borne pathogens. Although the transcriptional changes that occur throughout MZB development are known, the corresponding epigenetic changes and epigenetic modifying pro- teins that facilitate these changes are poorly understood. The histone demethylase LSD1 is an epigenetic modifier that promotes plasmablast formation, but its role in B cell development has not been explored. In this study, a role for LSD1 in the development of B cell subsets was examined. B cell–conditional deletion of LSD1 in mice resulted in a decrease in MZB whereas follicular B cells and bone marrow B cell populations were minimally affected. LSD1 repressed genes in MZB that were normally upregulated in the myeloid and follicular B cell lineages. Correspondingly, LSD1 regulated chromatin accessibility at the motifs of transcription factors known to regulate splenic B cell development, including NF-kB motifs. The importance of NF-kB signaling was examined through an ex vivo MZB development assay, which showed that both LSD1-deficient and NF-kB–inhibited transitional B cells Downloaded from failed to undergo full MZB development. Gene expression and chromatin accessibility analyses of in vivo– and ex vivo–generated LSD1-deficient MZB indicated that LSD1 regulated the downstream target genes of noncanonical NF-kB signaling. Addition- ally LSD1 was found to interact with the noncanonical NF-kB transcription factor p52. Together, these data reveal that the epigenetic modulation of the noncanonical NF-kB signaling pathway by LSD1 is an essential process during the development of MZB. The Journal of Immunology, 2019, 203: 000–000. http://www.jimmunol.org/ cell progenitors develop through multiple stages to be- Specific signaling mechanisms drive the MZB or FoB cell fate come mature naive B cells capable of generating a hu- decision. When immature B cells enter the periphery, they undergo B moral immune response. In the bone marrow, common positive selection through tonic BCR signaling to promote survival lymphoid progenitors progress through the pro-B and pre-B cell (3). The strength of tonic BCR signaling influences immature stages, during which the BCR is rearranged to generate a func- B cell fate with stronger signals promoting FoB commitment tional yet diverse repertoire of B cells (1). BCR-expressing immature and weaker signals promoting MZB commitment (3). Immature B cells migrate to the spleen, where they undergo transitional B cell B cells must experience two additional signaling pathways to (TrB) development, resulting in the formation of follicular B cells further commit to the MZB fate. The first is NOTCH2 signaling by guest on October 2, 2021 (FoB) and marginal zone B cells (MZB). FoB circulate throughout through interaction with the NOTCH ligand DLL1, which is the periphery and facilitate humoral immune responses to Ag and expressed by splenic venules in the red pulp and marginal zone give rise to memory B cells and long-lived plasma cells (1). MZB (1). The second is BAFFR-dependent activation of noncanonical localize to the splenic marginal sinus and rapidly respond to blood- NF-kB signaling (1). Both pathways are necessary for MZB cell borne pathogens, primarily forming short-lived plasmablasts (1, 2). development and function in a synergistic manner (1). Throughout cell fate commitment, MZB acquire a transcrip- tional identity distinct from FoB that confers specific functional Department of Microbiology and Immunology, Emory University School of Medi- capabilities (1, 2). For example, MZB express high levels of S1pr1 cine, Atlanta, GA 30322 to facilitate homing to the marginal zone (4) and downregulate ORCIDs: 0000-0001-9574-4341 (R.R.H.); 0000-0001-7716-8504 (C.D.S.); 0000- the FoB genes Itgb7, Cxcr4, and Ccr7 that facilitate homing to 0002-1395-2583 (J.L.L.); 0000-0002-2432-1840 (J.M.B.). secondary lymphoid organs (5). Myc is highly expressed in MZB, Received for publication June 13, 2019. Accepted for publication August 5, 2019. providing an enhanced capacity to proliferate in response to Ags This work was supported by the following National Institutes of Health grants: R01 such as bacterial LPS (6). MZB can rapidly respond to other TLR AI123733 and P01 AI125180 to J.M.B., T32 GM0008490 to R.R.H., and F31 AI131532 to R.R.H. agonists (7) and display a concomitant increase in innate immune The sequences presented in this article have been submitted to the National Center sensor molecules relative to FoB, including TLR3, TLR7, TLR9, for Biotechnology Information Gene Expression Omnibus (https://www.ncbi.nlm. NOD1/2/3, and NLRC4 (8). Although the MZB transcriptome is nih.gov/geo/query/acc.cgi?acc=GSE132227) under accession number GSE132227. characterized, the epigenetic modifications acquired during B cell Address correspondence and reprint requests to Dr. Jeremy M. Boss, Emory University, development that establish it are not well studied. Additionally, 1510 Clifton Road, Room 3001, Atlanta, GA 30322. E-mail address: [email protected] the enzymes that facilitate splenic B cell epigenetic remodeling The online version of this article contains supplemental material. are not known. Abbreviations used in this article: ATAC-seq, assay for transposase-accessible fl/fl Cre/+ Lysine-specific demethylase 1 (LSD1) is a histone demethylase chromatin sequencing; CKO, Kdm1a Cd19 conditional knockout; CreWT, Kdm1a+/+ Cd19Cre/+ wild-type; DAR, differentially accessible region; DEG, dif- that targets H3K4me1, H3K4me2, H3K9me1, and H3K9me2 ferentially expressed gene; eMZB, ex vivo–derived MZB; FDR, false discovery through FAD-dependent amine oxidation (9). LSD1-based modi- rate; FoB, follicular B cell; FSC, forward scatter; GSEA, gene set enrichment analysis; IP, immunoprecipitation; LSD1, lysine-specific demethylase 1; MZB, fication of chromatin results in the fine-tuning of target gene ex- marginal zone B cell; NP-40, Nonidet P-40; PCA, principal component analysis; pression, which is critical for driving cellular development (9). qPCR, quantitative PCR; RHD, Rel homology domain; RNA-seq, RNA sequenc- Regarding B cell differentiation, LSD1 promotes plasmablast for- ing; rppm, reads per peak per million; SSC, side scatter; TrB, transitional B cell. mation and decommissions active enhancers at Blimp-1, PU.1, and Copyright Ó 2019 by The American Association of Immunologists, Inc. 0022-1767/19/$37.50 IRF4 binding sites through H3K4me1 demethylation and repression www.jimmunol.org/cgi/doi/10.4049/jimmunol.1900654 2 LSD1 REGULATES MARGINAL ZONE B CELL DEVELOPMENT of chromatin accessibility (10). LSD1 also promotes germinal 13 penicillin/streptomycin, 10 mM HEPES, and 1 mM sodium pyruvate) center formation by repressing plasma cell genes, such as Prdm1 at 150,000 cells/ml, then 1 ml was plated onto OP9 cells after gently aspirating and Irf4, through enhancer decommissioning facilitated by inter- off OP9 media. Ten nanograms BAFF (8876-BF-010; R&D Systems) was added to the wells. Cells were placed in a 37˚C incubator for 3 d, then un- action with BCL6 (11). Despite evidence highlighting a critical derwent analyses. Where indicated, 800 nM of the IkB kinase inhibitor IKK- role for LSD1 in the epigenetic regulation of B cell differentiation, 16 (SML1138; Sigma-Aldrich) (17) or DMSO was added to the wells. its in vivo role during B cell development has not been explored. Flow cytometry In this study, mice with B cell–conditional deletion of LSD1 6 were used to examine its function throughout B cell development. Cells were resuspended at a concentration of 10 cells/100 mlFACS 3 Phenotyping revealed that LSD1 was dispensable for the devel- buffer (1 PBS, 2 mM EDTA, 1% BSA). Cells were stained with Fc block (2.4G2; BD Biosciences) for 15 min and then followed with opment of bone marrow B cell subsets and FoB but was required specific Ab fluorophores for 1 h at 4˚C, then washed with 10 volumes for MZB formation.
Recommended publications
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • B-Cell Malignancies in Microrna Eμ-Mir-17∼92 Transgenic Mice
    B-cell malignancies in microRNA Eμ-miR-17∼92 transgenic mice Sukhinder K. Sandhua, Matteo Fassana,b, Stefano Voliniaa,c, Francesca Lovata, Veronica Balattia, Yuri Pekarskya, and Carlo M. Crocea,1 aDepartment of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210; bARC-NET Research Centre, University of Verona, VR 37134, Verona, Italy; cDepartment of Morphology, Surgery and Experimental Medicine, University of Ferrara, FE 44121 Ferrara, Italy Contributed by Carlo M. Croce, September 22, 2013 (sent for review July 12, 2013) miR-17∼92 is a polycistronic microRNA (miR) cluster (consisting of cluster, but not of its paralogs, has shown that miR-17∼92 plays miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a) which an important role in B-cell development, and the KO mice die frequently is overexpressed in several solid and lymphoid malig- shortly after birth from lung hypoplasia and ventricular septal nancies. Loss- and gain-of-function studies have revealed the role defects (8). Further examination of the role of individual miRs in of miR-17∼92 in heart, lung, and B-cell development and in Myc- B-cell lymphomas showed that miR-19a and miR19b are required induced B-cell lymphomas, respectively. Recent studies indicate and sufficient for the proliferative activities of the cluster (9). that overexpression of this locus leads to lymphoproliferation, To understand better the role of the miR-17∼92 cluster in but no experimental proof that dysregulation of this cluster causes B-cell neoplastic progression, we generated miR-17∼92 B-cell– B-cell lymphomas or leukemias is available.
    [Show full text]
  • Coactivation of NF-Kb and Notch Signaling Is Sufficient to Induce B
    Regular Article LYMPHOID NEOPLASIA Coactivation of NF-kB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion Downloaded from https://ashpublications.org/blood/article-pdf/135/2/108/1550992/bloodbld2019001438.pdf by UNIV OF IOWA LIBRARIES user on 20 February 2020 Yan Xiu,1,* Qianze Dong,1,2,* Lin Fu,1,2 Aaron Bossler,1 Xiaobing Tang,1,2 Brendan Boyce,3 Nicholas Borcherding,1 Mariah Leidinger,1 Jose´ Luis Sardina,4,5 Hai-hui Xue,6 Qingchang Li,2 Andrew Feldman,7 Iannis Aifantis,8 Francesco Boccalatte,8 Lili Wang,9 Meiling Jin,9 Joseph Khoury,10 Wei Wang,10 Shimin Hu,10 Youzhong Yuan,11 Endi Wang,12 Ji Yuan,13 Siegfried Janz,14 John Colgan,15 Hasem Habelhah,1 Thomas Waldschmidt,1 Markus Muschen,¨ 9 Adam Bagg,16 Benjamin Darbro,17 and Chen Zhao1,18 1Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA; 2Department of Pathology, China Medical University, Shenyang, China; 3Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY; 4Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; 5Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Barcelona, Spain; 6Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA; 7Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN; 8Department of Pathology, NYU School of Medicine,
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Functional Genomics Analysis of Vitamin D Effects on CD4+ T Cells In
    Functional genomics analysis of vitamin D effects PNAS PLUS on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis Manuel Zeitelhofera,b, Milena Z. Adzemovica, David Gomez-Cabreroc,d,e, Petra Bergmana, Sonja Hochmeisterf, Marie N’diayea, Atul Paulsona, Sabrina Ruhrmanna, Malin Almgrena, Jesper N. Tegnérc,d,g, Tomas J. Ekströma, André Ortlieb Guerreiro-Cacaisa, and Maja Jagodica,1 aDepartment of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; bVascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; cUnit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; dScience for Life Laboratory, 171 21 Solna, Sweden; eMucosal and Salivary Biology Division, King’s College London Dental Institute, London SE1 9RT, United Kingdom; fDepartment of General Neurology, Medical University of Graz, 8036 Graz, Austria; and gBiological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, 23955 Thuwal, Kingdom of Saudi Arabia Edited by Tomas G. M. Hokfelt, Karolinska Institutet, Stockholm, Sweden, and approved January 19, 2017 (received for review September 24, 2016) Vitamin D exerts multiple immunomodulatory functions and has autoimmune destruction of myelin, axonal loss, and brain atro- been implicated in the etiology and treatment of several autoim- phy (6). Increased risk of developing MS has been described in mune diseases, including multiple sclerosis (MS). We have previously carriers of rare and common variants of the CYP27B gene (7, 8), reported that in juvenile/adolescent rats, vitamin D supplementation which encodes the enzyme that catalyzes the last step in con- protects from experimental autoimmune encephalomyelitis (EAE), a verting vitamin D to its active form, from 25(OH)D3 to 1,25 model of MS.
    [Show full text]
  • Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells
    Published OnlineFirst September 12, 2019; DOI: 10.1158/2326-6066.CIR-18-0934 Research Article Cancer Immunology Research Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells Arash Nanbakhsh1, Anupallavi Srinivasamani1, Sandra Holzhauer2, Matthew J. Riese2,3,4, Yongwei Zheng5, Demin Wang4,5, Robert Burns6, Michael H. Reimer7,8, Sridhar Rao7,8, Angela Lemke9,10, Shirng-Wern Tsaih9,10, Michael J. Flister9,10, Shunhua Lao1,11, Richard Dahl12, Monica S. Thakar1,11, and Subramaniam Malarkannan1,3,4,9,11 Abstract Natural killer (NK) cells generate proinflammatory cyto- g–dependent clearance of Listeria monocytogenes or B16F10 kines that are required to contain infections and tumor melanoma in vivo by NK cells. These functional changes growth. However, the posttranscriptional mechanisms that resulted from Mirc11 silencing ubiquitin modifiers A20, regulate NK cell functions are not fully understood. Here, we Cbl-b, and Itch, allowing TRAF6-dependent activation of define the role of the microRNA cluster known as Mirc11 NF-kB and AP-1. Lack of Mirc11 caused increased translation (which includes miRNA-23a, miRNA-24a, and miRNA-27a) of A20, Cbl-b, and Itch proteins, resulting in deubiquityla- in NK cell–mediated proinflammatory responses. Absence tion of scaffolding K63 and addition of degradative K48 of Mirc11 did not alter the development or the antitumor moieties on TRAF6. Collectively, our results describe a func- cytotoxicity of NK cells. However, loss of Mirc11 reduced tion of Mirc11 that regulates generation of proinflammatory generation of proinflammatory factors in vitro and interferon- cytokines from effector lymphocytes. Introduction TRAF2 and TRAF6 promote K63-linked polyubiquitination that is required for subcellular localization of the substrates (20), Natural killer (NK) cells generate proinflammatory factors and and subsequent activation of NF-kB (21) and AP-1 (22).
    [Show full text]
  • Next Generation Exome Sequencing of Paediatric Inflammatory Bowel Disease Patients Identifies Rare and Novel Variants in Candida
    Gut Online First, published on April 28, 2012 as 10.1136/gutjnl-2011-301833 Inflammatory bowel disease ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2011-301833 on 28 April 2012. Downloaded from Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes Katja Christodoulou,1 Anthony E Wiskin,2 Jane Gibson,1 William Tapper,1 Claire Willis,2 Nadeem A Afzal,3 Rosanna Upstill-Goddard,1 John W Holloway,4 Michael A Simpson,5 R Mark Beattie,3 Andrew Collins,1 Sarah Ennis1 < Additional materials are ABSTRACT published online only. To view Background Multiple genes have been implicated by Significance of this study these files please visit the association studies in altering inflammatory bowel journal online (http://gut.bmj. com/content/early/recent). disease (IBD) predisposition. Paediatric patients often What is already known on this subject? manifest more extensive disease and a particularly < For numbered affiliations see Genome-wide association studies have impli- end of article. severe disease course. It is likely that genetic cated numerous candidate genes for inflamma- predisposition plays a more substantial role in this group. tory bowel disease (IBD), but evidence of Correspondence to Objective To identify the spectrum of rare and novel causality for specific variants is largely absent. Dr Sarah Ennis, Genetic variation in known IBD susceptibility genes using exome Furthermore, by design, genome-wide associa- Epidemiology and Genomic sequencing analysis in eight individual cases of childhood Informatics Group, Human tion studies are limited to the study of Genetics, Faculty of Medicine, onset severe disease.
    [Show full text]
  • Original Article a Database and Functional Annotation of NF-Κb Target Genes
    Int J Clin Exp Med 2016;9(5):7986-7995 www.ijcem.com /ISSN:1940-5901/IJCEM0019172 Original Article A database and functional annotation of NF-κB target genes Yang Yang, Jian Wu, Jinke Wang The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China Received November 4, 2015; Accepted February 10, 2016; Epub May 15, 2016; Published May 30, 2016 Abstract: Backgrounds: The previous studies show that the transcription factor NF-κB always be induced by many inducers, and can regulate the expressions of many genes. The aim of the present study is to explore the database and functional annotation of NF-κB target genes. Methods: In this study, we manually collected the most complete listing of all NF-κB target genes identified to date, including the NF-κB microRNA target genes and built the database of NF-κB target genes with the detailed information of each target gene and annotated it by DAVID tools. Results: The NF-κB target genes database was established (http://tfdb.seu.edu.cn/nfkb/). The collected data confirmed that NF-κB maintains multitudinous biological functions and possesses the considerable complexity and diversity in regulation the expression of corresponding target genes set. The data showed that the NF-κB was a central regula- tor of the stress response, immune response and cellular metabolic processes. NF-κB involved in bone disease, immunological disease and cardiovascular disease, various cancers and nervous disease. NF-κB can modulate the expression activity of other transcriptional factors. Inhibition of IKK and IκBα phosphorylation, the decrease of nuclear translocation of p65 and the reduction of intracellular glutathione level determined the up-regulation or down-regulation of expression of NF-κB target genes.
    [Show full text]
  • Effects of Targeting the Transcription Factors Ikaros and Aiolos on B Cell Activation and Differentiation in Systemic Lupus Erythematosus
    Immunology and inflammation Lupus Sci Med: first published as 10.1136/lupus-2020-000445 on 16 March 2021. Downloaded from Effects of targeting the transcription factors Ikaros and Aiolos on B cell activation and differentiation in systemic lupus erythematosus Felice Rivellese ,1 Sotiria Manou- Stathopoulou,1 Daniele Mauro,1 Katriona Goldmann,1 Debasish Pyne,2 Ravindra Rajakariar,3 Patrick Gordon,4 Peter Schafer,5 Michele Bombardieri,1 Costantino Pitzalis,1 Myles J Lewis 1 To cite: Rivellese F, ABSTRACT Manou- Stathopoulou S, Objective To evaluate the effects of targeting Ikaros and Key messages Mauro D, et al. Effects of Aiolos by cereblon modulator iberdomide on the activation What is already known about this subject? targeting the transcription and differentiation of B- cells from patients with systemic factors Ikaros and Aiolos The transcription factors Ikaros and Aiolos, which lupus erythematosus (SLE). ► on B cell activation and are critical for B cell differentiation, are implicated in Methods CD19+ B- cells isolated from the peripheral differentiation in systemic systemic lupus erythematosus (SLE) pathogenesis. blood of patients with SLE (n=41) were cultured with lupus erythematosus. Targeting Ikaros and Aiolos using the cereblon mod- TLR7 ligand resiquimod ±IFNα together with iberdomide ► Lupus Science & Medicine ulator iberdomide has been proposed as a promising 2021;8:e000445. doi:10.1136/ or control from day 0 (n=16). Additionally, in vitro B- cell therapeutic agent. lupus-2020-000445 differentiation was induced by stimulation with IL-2/IL-10/ IL-15/CD40L/resiquimod with iberdomide or control, given What does this study add? at day 0 or at day 4.
    [Show full text]
  • NFKB1 and Cancer: Friend Or Foe?
    cells Review NFKB1 and Cancer: Friend or Foe? Julia Concetti and Caroline L. Wilson * Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-191-208-8590 Received: 15 August 2018; Accepted: 4 September 2018; Published: 7 September 2018 Abstract: Current evidence strongly suggests that aberrant activation of the NF-κB signalling pathway is associated with carcinogenesis. A number of key cellular processes are governed by the effectors of this pathway, including immune responses and apoptosis, both crucial in the development of cancer. Therefore, it is not surprising that dysregulated and chronic NF-κB signalling can have a profound impact on cellular homeostasis. Here we discuss NFKB1 (p105/p50), one of the five subunits of NF-κB, widely implicated in carcinogenesis, in some cases driving cancer progression and in others acting as a tumour-suppressor. The complexity of the role of this subunit lies in the multiple dimeric combination possibilities as well as the different interacting co-factors, which dictate whether gene transcription is activated or repressed, in a cell and organ-specific manner. This review highlights the multiple roles of NFKB1 in the development and progression of different cancers, and the considerations to make when attempting to manipulate NF-κB as a potential cancer therapy. Keywords: NF-κB; NFKB1; p105/p50; Bcl-3; cancer; inflammation; apoptosis 1. Introduction One of the emerging questions in cancer biology is: “How are inflammation and dysregulated immune responses linked to cancer?” It is now widely accepted that chronic inflammation and infection represent major risk factors for certain cancers.
    [Show full text]