Species Frequently Found in Native Plant Communities

Total Page:16

File Type:pdf, Size:1020Kb

Species Frequently Found in Native Plant Communities Species Frequently Found in Native Plant Communities Northern Rich Tamarack Swamp (Water Track) (FPn81) Types in Class: None defined Geographic Groups: FPn81 in Northwestern Minnesota FPn81 in Northcentral Minnesota FPn81 in Voyageurs National Park area Scientific Name Column1 Common Name Rare Status Andromeda glaucophylla bog rosemary Betula pumila bog birch Carex disperma soft-leaved sedge Carex leptalea bristle-stalked sedge Carex paupercula boreal bog sedge Larix laricina tamarack Ledum groenlandicum labrador tea Lonicera villosa mountain fly honeysuckle Lysimachia thyrsiflora tufted loosestrife Picea mariana black spruce Potentilla palustris marsh cinquefoil Salix spp. willow Sarracenia purpurea pitcher plant Smilacina trifolia three-leaved false Solomon's seal Sphagnum spp. sphagnum Thuja occidentalis white cedar Vaccinium oxycoccos small cranberry Source: Minnesota Department of Natural Resources (2005). Field Guide to the Native Plant Communities of Minnesota: The Laurentian Mixed Forest Province. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. MNDNR St. Paul, MN. ©2016, MinnesotaSeasons.com. All rights reserved. Species Frequently Found in Native Plant Communities Northern Rich Tamarack Swamp (Water Track) (FPn81) FPn81 in Northcentral Minnesota Scientific Name Column1 Common Name Rare Status Aster borealis bog aster Carex prairea prairie sedge Glyceria striata fowl manna grass Larix laricina tamarack Picea mariana black spruce Source: Minnesota Department of Natural Resources (2005). Field Guide to the Native Plant Communities of Minnesota: The Laurentian Mixed Forest Province. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. MNDNR St. Paul, MN. ©2016, MinnesotaSeasons.com. All rights reserved. Species Frequently Found in Native Plant Communities Northern Rich Tamarack Swamp (Water Track) (FPn81) FPn81 in Northcentral Minnesota Scientific Name Column1 Common Name Rare Status Aronia melanocarpa black chokeberry Calla palustris wild calla Carex pseudocyperus cyperus sedge Larix laricina tamarack Phragmites australis common reedgrass Picea mariana black spruce Source: Minnesota Department of Natural Resources (2005). Field Guide to the Native Plant Communities of Minnesota: The Laurentian Mixed Forest Province. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. MNDNR St. Paul, MN. ©2016, MinnesotaSeasons.com. All rights reserved. Species Frequently Found in Native Plant Communities Northern Rich Tamarack Swamp (Water Track) (FPn81) FPn81 in Voyageurs National Park area Scientific Name Column1 Common Name Rare Status Alnus incana speckled alder Cypripedium reginae showy lady's slipper Larix laricina tamarack Myrica gale sweet gale Picea mariana black spruce Thuja occidentalis white cedar Source: Minnesota Department of Natural Resources (2005). Field Guide to the Native Plant Communities of Minnesota: The Laurentian Mixed Forest Province. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. MNDNR St. Paul, MN. ©2016, MinnesotaSeasons.com. All rights reserved..
Recommended publications
  • Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
    National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp.
    [Show full text]
  • Tamarack (Larix Laricina) by Joyce Tuharsky
    Natives to Know: Tamarack (Larix Laricina) By Joyce Tuharsky One of our northernmost trees, the hardy Tamarack is a slender-trunked, conical tree that grows 50-75 feet tall. The needles are a bright blue-green and surprisingly soft. They grow in tight spirals around short knobby spurs along the twigs. Tamaracks are among the few conifers that lose their needles in autumn. Just before the needles drop, the needles turn a beautiful golden-yellow. Tamarack cones are egg-shaped and among the smallest: less than an inch long. The bark is tight and flaky. Under this flaking bark, the wood appears reddish, giving the tree an interesting appearance even without needles. Very cold tolerant, Tamaracks are able to survive temperatures down to −85 °F. They are commonly found at the arctic tree line where it grows as a shrub. In more southerly locations, Tamaracks are normally found in wet soils in swamps, bogs and along lake edges. They are among the first trees to invade filled-lake bogs and are fairly well adapted to reproduce after a fire. However, because of its thin bark and shallow root system, the tree itself does not stand up well to fire. Also, the seedlings do not establish well in shade. Consequently, other more shade tolerant species eventually succeed Tamaracks. Tamaracks are native to much of Canada and south into the northeastern US from Minnesota to West Virginia. Because obits extensive range, the tree is known by many names: American Larch, Eastern Larch, Red Larch, and Hackmatack. The name “Tamarack” is Algonquian and means "wood used for snowshoes."Indeed, because Tamarack wood is very sturdy, yet flexible in thin strips, Native Americans used the wood and roots for many things: snowshoes, toboggans, sewing edges of canoes, and weaving twined bags.
    [Show full text]
  • Natural Landscapes of Maine a Guide to Natural Communities and Ecosystems
    Natural Landscapes of Maine A Guide to Natural Communities and Ecosystems by Susan Gawler and Andrew Cutko Natural Landscapes of Maine A Guide to Natural Communities and Ecosystems by Susan Gawler and Andrew Cutko Copyright © 2010 by the Maine Natural Areas Program, Maine Department of Conservation 93 State House Station, Augusta, Maine 04333-0093 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without written permission from the authors or the Maine Natural Areas Program, except for inclusion of brief quotations in a review. Illustrations and photographs are used with permission and are copyright by the contributors. Images cannot be reproduced without expressed written consent of the contributor. ISBN 0-615-34739-4 To cite this document: Gawler, S. and A. Cutko. 2010. Natural Landscapes of Maine: A Guide to Natural Communities and Ecosystems. Maine Natural Areas Program, Maine Department of Conservation, Augusta, Maine. Cover photo: Circumneutral Riverside Seep on the St. John River, Maine Printed and bound in Maine using recycled, chlorine-free paper Contents Page Acknowledgements ..................................................................................... 3 Foreword ..................................................................................................... 4 Introduction ...............................................................................................
    [Show full text]
  • Vaccinium Oxycoccos L
    Plant Guide these fruits in their food economy (Waterman 1920). SMALL CRANBERRY Small cranberries were gathered wild in England and Vaccinium oxycoccos L. Scotland and made into tarts, marmalade, jelly, jam, Plant Symbol = VAOX and added to puddings and pies (Eastwood 1856). Many colonists were already familiar with this fruit Contributed by: USDA NRCS National Plant Data in Great Britain before finding it in North America. Team, Greensboro, NC The small cranberry helped stock the larder of English and American ships, fed trappers in remote regions, and pleased the palates of Meriwether Lewis and William Clark in their explorations across the United States (Lewis and Clark 1965). The Chinook, for example, traded dried cranberries with the English vessel Ruby in 1795 and at Thanksgiving in 1805 Lewis and Clark dined on venison, ducks, geese, and small cranberry sauce from fruit brought by Chinook women (McDonald 1966; Lewis and Clark 1965). Because the small cranberry can grow in association with large cranberry (Vaccinium macrocarpon) in the Great Lakes region, northeastern USA and southeastern Canada (Boniello 1993; Roger Latham pers. comm. 2009) it is possible that the Pilgrims of Plymouth were introduced to both edible Small cranberries growing in a bog on the western Olympic species by the Wampanoag. Peninsula, Washington. Photograph by Jacilee Wray, 2006. The berries are still gathered today in the United Alternate Names States, Canada, and Europe (Himelrick 2005). The Bog cranberry, swamp cranberry, wild cranberry Makah, Quinault, and Quileute of the Olympic Peninsula still gather them every fall and non-Indians Uses from early settler families still gather them (Anderson Said to have a superior flavor to the cultivated 2009).
    [Show full text]
  • Anti-Carcinoma Activity of Vaccinium Oxycoccos
    Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2017, 9 (3):74-79 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Anti-carcinoma activity of Vaccinium oxycoccos Mansoureh Masoudi1, Milad Saiedi2* 1Valiasr Eghlid hospital, Shiraz University of medical sciences, Shiraz, Iran 2student of medicine, international Pardis University of Yazd, Yazd, Iran *Corresponding author: Milad Saiedi, student of medicine, international Pardis University of Yazd, Yazd, Iran _______________________________________________________ ABSTRACT Introduction: Vaccinium oxycoccos or cranberry are evergreen shrubs in the subgenus Oxycoccos of the genus Vaccinium. The aim of this study was to overview anti-carcinoma activity of Vaccinium oxycoccos. Methods: This review article was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases. The initial search strategy identified about 79 references. In this study, 56 studies were accepted for further screening and met all our inclusion criteria [in English, full text, therapeutic effects of Vaccinium oxycoccos and dated mainly from the year 2002 to 2016.The search terms were “Vaccinium oxycoccos”, “therapeutic properties”, “pharmacological effects”. Result: the result of this study showed that Vaccinium oxycoccos possess anti-carcinoma activity against the following cancers: prostate, bladder, lymphoma, ovarian, cervix, breast, lung, and colon. Conclusion: the results from this review are quite promising for the use of Vaccinium oxycoccos as an anti-cancer agent. Vaccinium oxycoccos possess the ability to suppress the proliferation of human breast cancer MCF-7 cells and this suppression is at least partly attributed to both the initiation of apoptosis and the G1 phase arrest. Keywords: Vaccinium oxycoccos, Phytochemicals, Therapeutic effects, Pharmacognosy, Alternative and complementary medicine.
    [Show full text]
  • Chapter 5: Vegetation of Sphagnum-Dominated Peatlands
    CHAPTER 5: VEGETATION OF SPHAGNUM-DOMINATED PEATLANDS As discussed in the previous chapters, peatland ecosystems have unique chemical, physical, and biological properties that have given rise to equally unique plant communities. As indicated in Chapter 1, extensive literature exists on the classification, description, and ecology of peatland ecosystems in Europe, the northeastern United States, Canada, and the Rocky Mountains. In addition to the references cited in Chapter 1, there is some other relatively recent literature on peatlands (Verhoeven 1992; Heinselman 1963, 1970; Chadde et al., 1998). Except for efforts on the classification and ecology of peatlands in British Columbia by the National Wetlands Working Group (1988), the Burns Bog Ecosystem Review (Hebda et al. 2000), and the preliminary classification of native, low elevation, freshwater vegetation in western Washington (Kunze 1994), scant information exists on peatlands within the more temperate lowland or maritime climates of the Pacific Northwest (Oregon, Washington, and British Columbia). 5.1 Introduction There are a number of classification schemes and many different peatland types, but most use vegetation in addition to hydrology, chemistry and topological characteristics to differentiate among peatlands. The subject of this report are acidic peatlands that support acidophilic (acid-loving) and xerophytic vegetation, such as Sphagnum mosses and ericaceous shrubs. Ecosystems in Washington state appear to represent a mosaic of vegetation communities at various stages of succession and are herein referred to collectively as Sphagnum-dominated peatlands. Although there has been some recognition of the unique ecological and societal values of peatlands in Washington, a statewide classification scheme has not been formally adopted or widely recognized in the scientific community.
    [Show full text]
  • Botanical Name Common Name
    Approved Approved & as a eligible to Not eligible to Approved as Frontage fulfill other fulfill other Type of plant a Street Tree Tree standards standards Heritage Tree Tree Heritage Species Botanical Name Common name Native Abelia x grandiflora Glossy Abelia Shrub, Deciduous No No No Yes White Forsytha; Korean Abeliophyllum distichum Shrub, Deciduous No No No Yes Abelialeaf Acanthropanax Fiveleaf Aralia Shrub, Deciduous No No No Yes sieboldianus Acer ginnala Amur Maple Shrub, Deciduous No No No Yes Aesculus parviflora Bottlebrush Buckeye Shrub, Deciduous No No No Yes Aesculus pavia Red Buckeye Shrub, Deciduous No No Yes Yes Alnus incana ssp. rugosa Speckled Alder Shrub, Deciduous Yes No No Yes Alnus serrulata Hazel Alder Shrub, Deciduous Yes No No Yes Amelanchier humilis Low Serviceberry Shrub, Deciduous Yes No No Yes Amelanchier stolonifera Running Serviceberry Shrub, Deciduous Yes No No Yes False Indigo Bush; Amorpha fruticosa Desert False Indigo; Shrub, Deciduous Yes No No No Not eligible Bastard Indigo Aronia arbutifolia Red Chokeberry Shrub, Deciduous Yes No No Yes Aronia melanocarpa Black Chokeberry Shrub, Deciduous Yes No No Yes Aronia prunifolia Purple Chokeberry Shrub, Deciduous Yes No No Yes Groundsel-Bush; Eastern Baccharis halimifolia Shrub, Deciduous No No Yes Yes Baccharis Summer Cypress; Bassia scoparia Shrub, Deciduous No No No Yes Burning-Bush Berberis canadensis American Barberry Shrub, Deciduous Yes No No Yes Common Barberry; Berberis vulgaris Shrub, Deciduous No No No No Not eligible European Barberry Betula pumila
    [Show full text]
  • Larix Laricina (Du Roi) K
    Plant Guide Various wildlife eat the seeds, seedlings, and bark TAMARACK and birds use the trees for nesting. Larix laricina (Du Roi) K. Status Koch Please consult the PLANTS Web site and your State Plant Symbol = LALA Department of Natural Resources for this plant’s current status, such as, state noxious status and Contributed by: USDA NRCS National Plant Data wetland indicator values. Center & the Biota of North America Program Description General: Pine Family (Pinaceae). Native trees growing to 20 meters tall, strongly self-pruning, with a straight, slender trunk and narrow, open, pyramidal crown that occupies one-third to one-half the bole length 25-30 years; branches whorled, horizontal or slightly ascending; short (spur) shoots prominent on twigs 2 years or more old. Bark of young trees is gray, smooth, becoming reddish brown and scaly. Leaves are deciduous, needlelike, 1-2 cm long, pale blue-green, produced in clusters on short shoots or singly along the long shoots, yellowing and shed in the fall. Seed cones are 1-2 cm long, upright; seeds winged, the bodies 2-3 mm long. The common name is the Algonquian Indian name for the plant. Variation within the species: the Alaskan populations of Larix laricina have been described as a different species (Larix alaskensis = Larix laricina var. alaskensis) on the basis of narrower cone scales and bracts, but the variability is now generally recognized as within the range of other populations of the species. Genetic differences in photoperiodic response, germination, and growth patterns have been documented among trees taken from various parts of R.
    [Show full text]
  • Tamarack an American Wood United States Department of Agriculture
    Forest Service Tamarack An American Wood United States Department of Agriculture FS-268 Tamarack grows from Maine to Min- nesota, throughout much of Canada, and in Alaska. Most of its volume in the United States is in the northern Lake States and Maine. The tree, whose needles fall in autumn, is found especially on wet lowlands where it grows fast in full sunlight. The brownish heartwood contrasts with the narrow, whitish sapwood. The wood- one of the heaviest of the northern conifers–is medium to fine textured, odorless, tasteless, and somewhat oily. It rates intermediate in strength, is easi- ly pulped, and has fairly high heating value. Recent use has been largely for pulp products, but in earlier days tamarack was used in the construction of wooden ships and for lumber. An American Wood Tamarack (Larix laricina (Du Roi) K. Koch) William F. Johnston1 and Eugene M. Carpenter2 Distribution Tamarack has one of the widest ranges of all North American conifers (fig. 1). The tree grows throughout much of Canada, with a range extending to the northern limit of tree growth. In the United States tamarack's main range extends from Maine to Minnesota; the tree also grows locally as far south as northern West Virginia. A major dis- junct area occurs in the Yukon and Kuskokwim drainages in interior Alaska. In the United States tamarack is most abundant in the northern Lake States, particularly Minnesota, where it grows mainly on glacial lakebeds and lake- swamp-moraine plains at elevations averaging about 1,000 feet. The tree is also abundant in Maine from elevations of less than 500 feet to more than 1,000 feet.
    [Show full text]
  • Tree Sale 2018.Xlsx
    Contact: Jeannie Bartlett Franklin County Natural Resources Conservation District Pick‐up: Saturday May 5th 802‐528‐4176 Franklin County Field Days [email protected] 2018 Tree Sale Order Form 294 Airport Road, Highgate updated 3/1/2018 Botanical name Name Source Size Unit Price Number Total Price Bare‐root: Habitat‐quality deciduous Other sizes may be available. Call to inquire. * Acer rubrum Red Maple VT 2‐3 ft $9.00 $ * Acer saccharinum Silver Maple VT 2‐3 ft $9.00 $ All orders must be * Acer saccharum Sugar Maple VT 2‐3 ft $9.00 $ * Amelanchier canadensis Serviceberry VT 2‐3 ft $9.00 $ * Aronia melanocarpa Black Chokeberry VT 2‐3 ft $9.00 $ * Betula alleghaniensis Yellow Birch VT 2‐3 ft $9.00 $ * Cornus sericea Red Osier Dogwood VT 2‐3 ft Sale! $6.00 $ * Ilex verticillata Winterberry VT 2‐3 ft $9.00 $ received by * Juglans cinerea Butternut VT 2‐3 ft $9.00 $ * Juglans nigra Black Walnut VT 2‐3 ft $9.00 $ * Larix laricina Larch (Tamarack) VT 2‐3 ft $9.00 $ * Prunus virginiana Choke Cherry VT 2‐3 ft $9.00 $ March 16th * Quercus bicolor Swamp White Oak VT 2‐3 ft $9.00 $ * Quercus rubra Red Oak VT 2‐3 ft $9.00 $ * Salix spp. Shrub, 5 spp Willow VT 2‐3 ft $9.00 $ . * Sambucus canadensis American Elderberry VT crown, 1‐3 ft $9.00 $ Availability is running low * Viburnum trilobum Highbush Cranberry VT 2‐3 ft Sale! $6.00 $ Bare‐root: Domesticated fruits, nuts and flowers Malus domestica Cortland Apple NY 1/2" diam $28.00 $ Malus domestica Dayton Apple VT 3‐4 ft $28.00 $ Malus domestica Liberty Apple NY 1/2" diam $28.00 $ Malus domestica Macintosh Apple NY 1/2" diam $28.00 $ Malus domestica Zabergau Apple VT 3‐4 ft $28.00 $ , Vaccinium cyanococcus pair of Bluecrop & Duke Blueberries NJ 3 yr 18/24" $22.00 $ so be aware that we Sambucus domesticated Elderberry MA crown, 1‐3 ft $14.00 $ Vitis labrusca Concord Grapes NY 1 ft $4.00 $ Corylus hybrid Hazelnut VT 3 ft $14.00 $ Syringa vulgaris Lilac NY 2‐3 ft $9.00 $ Prunus persica Reliance Peach NY 1/4" diam, 3‐4 ft $28.00 $ Rubus idaeus Encore (summer) Raspberries MA rooted cutting $9.00 $ items.
    [Show full text]
  • List of Paludicultural Plants and Utilisation Options (Selection)
    Paludicultural plants and utilisation options (selection) English name Latin name Most promising uses Other uses Peat moss Sphagnum spp. Founder material for restoration and Sphagnum farming Insulation and packaging material Orchid cultivation Food preservation Horticultural growing media replacing peat Medical dressings, diapers, and substrates for carnivorous plants, for vivaria with sanitary towels amphibians, reptiles and spiders, Sphagnum extracts as source of substrate for hanging baskets, wreathes and vegetation walls natural sunscreen Sundew Drosera rotundifolia Medicinal uses Vegetarian rennet for cheese making Cattail, Bulrush Typha angustifolia, Insulation material Combustion Typha latifolia Filling material (seed hairs) Biogas Construction material Extraction of proteins likely Packaging and disposable tableware Horticultural growing media replacing peat very Fodder Pollen for feeding predatory mites (pest control in glasshouses) Reed Phragmites australis Thatching material Paper Insulation material Biogas Construction material Liquid fuels cultivation Packaging and disposable tableware Extraction of proteins of Fodder Silicon from reed leaves for high‐ Combustion performance energy storage devices Giant cane Arundo donax Combustion Biogas Uptake Reed Manna Grass Glyceria maxima Fodder Biogas Extraction of proteins Reed canary grass Phalaris arundinacea Packaging and disposable tableware Paper Panels Biogas Fodder Liquid fuels Bedding Extraction of proteins Combustion Sedges Carex
    [Show full text]
  • Vegetation Classification and Mapping Project Report
    U.S. Geological Survey-National Park Service Vegetation Mapping Program Acadia National Park, Maine Project Report Revised Edition – October 2003 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U. S. Department of the Interior, U. S. Geological Survey. USGS-NPS Vegetation Mapping Program Acadia National Park U.S. Geological Survey-National Park Service Vegetation Mapping Program Acadia National Park, Maine Sara Lubinski and Kevin Hop U.S. Geological Survey Upper Midwest Environmental Sciences Center and Susan Gawler Maine Natural Areas Program This report produced by U.S. Department of the Interior U.S. Geological Survey Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603 and Maine Natural Areas Program Department of Conservation 159 Hospital Street 93 State House Station Augusta, Maine 04333-0093 In conjunction with Mike Story (NPS Vegetation Mapping Coordinator) NPS, Natural Resources Information Division, Inventory and Monitoring Program Karl Brown (USGS Vegetation Mapping Coordinator) USGS, Center for Biological Informatics and Revised Edition - October 2003 USGS-NPS Vegetation Mapping Program Acadia National Park Contacts U.S. Department of Interior United States Geological Survey - Biological Resources Division Website: http://www.usgs.gov U.S. Geological Survey Center for Biological Informatics P.O. Box 25046 Building 810, Room 8000, MS-302 Denver Federal Center Denver, Colorado 80225-0046 Website: http://biology.usgs.gov/cbi Karl Brown USGS Program Coordinator - USGS-NPS Vegetation Mapping Program Phone: (303) 202-4240 E-mail: [email protected] Susan Stitt USGS Remote Sensing and Geospatial Technologies Specialist USGS-NPS Vegetation Mapping Program Phone: (303) 202-4234 E-mail: [email protected] Kevin Hop Principal Investigator U.S.
    [Show full text]