Pest & Beneficials Sight ID List Pests Class Order Family Scientific Name

Total Page:16

File Type:pdf, Size:1020Kb

Pest & Beneficials Sight ID List Pests Class Order Family Scientific Name Pest & Beneficials Sight ID List Pests Class Order Family Scientific Name Common Name Arachnida Acari Tetranychus urticae Twospotted spider mite Insecta Orthoptera Gryllotalpidae Mole Cricket Hemiptera Blissus insularis Southern Chinch Bug Icerya purchase Cottony cushion scale Homalodisca coagulata Glassy-winged sharpshooter Aphis gosspyii Melon aphid Bemisia tabaci biotype B Silverleaf whitefly Diaphorina citri Kuwayama Asian Citrus Psyllid Pentatomidae Stink Bugs Flatidae Flatid Planthoppers Acanaloniidae Acanaloniid Planthoppers Coreidae Leaf-Footed Bugs Thysanoptera Frankliniella spp. Flower Thrips Coleoptera Leptinotarsa decemlineata Colorado potato beetle Popillia japonica Japanese beetle Diaprepes abbreviatus Diaprepes root weevil Carpophilus spp. Sap beetles Cyclocephala parallela Masked Chafer Colaspis pseudofavosa Blueberry leaf beetle Altica spp. Flea beetle Microtheca ochroloma Yellowmargined leaf beetle Diptera Anastrepha oblique West Indian fruit fly Anastrepha suspensa Caribbean fruit fly Ceratitis capitata Mediterranean fruit fly Drosophila suzukii Spotted wing drosophila Lepidoptera Spodoptera eridania Southern armyworm Spodoptera exigua Beet armyworm Pest & Beneficials Sight ID List Spodoptera frugiperda Fall armyworm Heliothis virescens Tobacco budworm Pieris rapae Cabbage worm Plutella xylostella Diamondback moth Trichoplusia ni Cabbage looper Anticarsia gemmatalis Velvetbean caterpillar Helicoverpa zea Corn earworm Vitacea polistiformis Grape root borer Beneficials Class Order Family Scientific Name Common Name Arachnida Acari Neoseiulus californicus Predatory mite Insecta Neuroptera Chrysopidae Common lacewings Hemerobiidae Brown lacewings Hemiptera Podisus maculiventris Spined soldier bug Orius insidiosus Minute pirate bug Geocoris sp. Big eyed bug Coleoptera Harmonia axyridis Lady beetles Hippodamia convergens Lady beetles Coleomagilla maculata Lady beetles Delphastus catalinae Lady beetles Carabidae Ground Beetles Hymenoptera Diadegma insulare parasitoid Cotesia plutella parasitoid Diachasma alloeum parasitoid .
Recommended publications
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Control of Anticarsia Gemmatalis Hubner with Recommended And
    CONTROL OF Anticarsia gemmatalis hubner with recommended AND EXPERIMENTAL CHEMICAL AND MICROBIAL PESTICIDES AND THEIR EFFECTS ON THE PREDATORY SPECIES IN SOYBEAN AGROECOSYSTEMS YUSOH BIN SALLEH A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1980 ACKNOWLEDGMENTS I am very grateful to my chairman, Dr. G. E. Allen, and co-chairman. Dr. D. C. Herzog, and committee members, Drs. D. H. Habeck and E. B. Whitty for their assistance and guidance throughout my program. Other faculty members whose council has been invaluable are Drs, R. L. Lipsey, S. H. Kerr, and W. H. Whitcomb. My most sincere thanks are extended to Dr. D. C. Herzog for his invaluable guidance in my field work. Thanks are also due to Mr. Andrew Brown for his help in the field; Mr. Skip Choate for his help in identifications of some of my specimens; and Mr. P. J. d'Almada for his help in statistical analysis. Thanks are also due to MARDI for financial support which made this study possible. A very special gratitude is extended to my family in Malaysia for their encouragement and understanding; and to dear friends Ms. Thelma Carlysle and Ms. Frances Ward for their encour- agement and comforts. Last but not least, my love and appreciation goes to my wife Rohani and my daugthers Sharila and Melissa who always flower me with love, patience, and encouragement. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS , j_i LIST OF TABLES V LIST OF FIGURES "^^^ ABSTRACT
    [Show full text]
  • Pheromone Production in the Butterfly Pieris Napi L
    Pheromone production in the butterfly Pieris napi L. Rushana Murtazina KTH Chemical Science and Engineering Doctoral Thesis Stockholm 2014 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av filosofie doktorsexamen i kemi, onsdagen den 26 mars 2014 kl 10 i sal F3, Lindstedtsvägen 26, KTH, Stockholm. Avhandlingen försvaras på engelska. Opponent är professor Joop van Loon, Wageningen University, Nederländerna. Cover: picture of Joanna Sierko-Filipowska. - - - - - TRITA-CHE Report 2014:8 © Rushana Murtazina, 2014 US-AB, Stockholm Rushana Murtazina. Pheromone production in the butterfly Pieris napi L. Organic Chemistry, Chemical Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden, 2014. ABSTRACT Aphrodisiac and anti-aphrodisiac pheromone production and composition in the green- veined white butterfly Pieris napi L. were investigated. Aphrodisiac pheromone biosynthesis had different time constraints in butterflies from the diapausing and directly developing generations. Effects of stable isotope incorporation in adult butterfly pheromone, in the nectar and flower volatiles of host plants from labeled substrates were measured by solid phase microextraction and gas chromatography–mass spectrometry. A method to fertilize plants with stable isotopes was developed and found to be an effective method to investigate the transfer of pheromone building blocks from flowering plants to butterflies. The anti-aphrodisiac methyl salicylate was not biosynthesized from phenylalanine in flowers of Alliaria petiolata. Both aphrodisiac and anti-aphrodisiac pheromones in P. napi are produced not only from resources acquired in the larval stage, but also from nutritional resources consumed in the adult stage. Males of P. napi produce the anti-aphrodisiac pheromone from both the essential amino acid L-phenylalanine and from common flower fragrance constituents.
    [Show full text]
  • 125 Variations in the Markings of Pieris Rapae (Pieridae
    VOLUME 24, i'-'UMBER 2 125 VARIATIONS IN THE MARKINGS OF PIERIS RAPAE (PIERIDAE) INDUCED DUlUNG THE PUPAL STAGE JOHN M. KOLYER 55 Chimney Ridge Drive, Convent, New Jersey, U.S.A. Introduction The present work represents the conclusion of a study which has involved observations on the effects of feeding larvae certain chemicals (Kolyer, 1966) and on the effects of environmental factors (Kolyer, 1969) on the wing markings of the European cabbage butterfly Pieris rapae ( Linnaeus ) . Specific objects were to note variations in markings as a result of (1) reduced-temperature storage of pupae of various ages, as an extension of previous work (Kolyer, 1969), (2) brief, barely sublethal heating of pupae, and (3) exposure of pupae to short-wave ultraviolet (UV) radiation. Incidental observations, e.g. on larval disease and the yellow form of P. rapae, also are included. Experimental Procedures Rearing. Final instal' larvae were reared on an artificial diet at 79 ± 2°F and 45 ± 5% relative humidity under continuous cool white fluores­ cent light. Larval development was completed on cabbage leaves from refrigerated heads (see Kolyer, 1966); rearing room conditions were: 70- 81°F, approx. 20-33% reI. hum., diffuse sunlight (March 6-April 17, 1969, Convent, New Jersey) . Refrigeration of pupae. As in previous work (Kolyer, 1969), pupae were packed carefully along with facial tissues in fiber mailing cans, which were covered with polyethylene bags to exclude moisture and stored in a refrigerator at 32-36°F for 154-156 days (approx. 5 months). Heat treatment of pupae. Two test tubes, one inside the other, were immersed in hot water in a Dewar (vacuum-jacketed) vessel and allowed to equilibrate so that the temperature of the air within the inner tube ap­ proximated the temperature of the bath.
    [Show full text]
  • Manduca Sexta and Hyles Lineata (Sphingidae), and Helicoverpa Zea (Noctuidae)
    VOLUME 60, NUMBER 2 101 weedy Pieridae including Pieris rapae L. and Pontia Argentine Andean and Patagonian Pierid fauna. J.Res.Lepid. 28:137-238. protodice Bdv. & LeC., but it is almost never seen above —— 1997. Impactos antropogenicos sobre la fauna de mariposas 1500m and is completely absent in climates comparable (Lepidoptera: Rhopalocera) de Patagonia austral y Tierra del to that at Las Lenas. The erect, even bushy growth form Fuego. Anales Instituto de la Patagonia (Punta Arenas, Chile), Ser.Cs.Nat. 25: 117-l26. of this plant has no analogue in the native brassicaceous —— 2002. The Californian urban butterfly fauna is dependent on flora of the high Andes. It would seem P. nymphula has alien plants. Diversity & Distributions 8: 31-40. successfully colonized this plant by focusing strictly on small rosettes, whose growth form, with tightly ARTHUR M. SHAPIRO, Center for Population Biology, imbricated leaves, is familiar to it as the mature plant is University of California, Davis, CA 95616 not. Received for publication 9 February 2005; revised and accepted 13 I thank Joanne Smith-Flueck and Santiago Cara for July 2005 companionship afield. LITERATURE CITED GRAVES, S.D. & A. M. SHAPIRO. 2003. Exotics as host plants of the California butterfly fauna. Biol. Cons. 110: 413-433. SHAPIRO,A. M. 1991. The zoogeography and systematics of the Journal of the Lepidopterists’ Society 60(2), 2006, 101–103 SURVIVAL OF FREEZING AND SUBSEQUENT SUMMER ECLOSION BY THREE MIGRATORY MOTHS: MANDUCA SEXTA AND HYLES LINEATA (SPHINGIDAE), AND HELICOVERPA ZEA (NOCTUIDAE). Additional key words: overwintering, Heliothis virescens Hyles lineata (Fabricius) and Helicoverpa zea al., 1995), Nova Scotia (Ferguson, 1955), and Quebec (Boddie) are well known migrants whose overwintering (Handfield, 1999) often in September and October, the limits are apparently poorly known.
    [Show full text]
  • European Cabbageworm Pieris Brassicae
    Michigan State University’s invasive species factsheets European cabbageworm Pieris brassicae The European cabbageworm defoliates cabbage and other cruciferous crops and is related to the imported cabbageworm (P. rapae) already established in Michigan. This insect poses a concern to vegetable producers and nurseries dealing with crucifers. Michigan risk maps for exotic plant pests. Other common names large white butterfly, cabbage white butterfly Systematic position Insecta > Lepidoptera > Pieridae > Pieris brassicae (Linnaeus) Global distribution Widely distributed in Europe, Asia, Northern Africa, and Adult. (Photo: H. Arentsen, Garden Safari, Bugwood.org) Chile, South America. Quarantine status This insect has been reported from New York State (Opler et al 2009); although it is unclear if this record has been confirmed by regulatory officials. Plant hosts Cruciferous plants: Brussels sprouts, cabbage, cauliflower, rape, rutabaga, turnip (Brassica spp.), horseradish (Armoracia rusticana), radish (Raphanus sativus), watercress (Nasturtium microphyllum) and garlic mustard (Alliaria petiolata). Larva. (Photo from INRA HYPPZ) Biology A female butterfly lays masses of yellow eggs on underside of host leaves. After egg hatch, caterpillars feed on leaves. Young caterpillars aggregate while older caterpillars occur separately. Fully grown caterpillar leaves the plant and moves to a suitable pupation site (e.g., fences, walls, roofs or tree trunks). The pupa is anchored by a spindle of silk. Adult butterflies are active from April through October feeding on nectar from a wide array of plants. Identification Pupa. (Photo from INRA HYPPZ) Adult: Wingspan is 60-70 mm. Wings are white with Eggs: Yellow. black tips on the forewings. Females also have two black spots on each forewing. Signs of infestation Caterpillar: Up to 60 mm in length; body hairy and Presence of egg mass or larvae on leaves of crucifers.
    [Show full text]
  • Bacillus Thuringiensis Cry1ac Protein and the Genetic Material
    BIOPESTICIDE REGISTRATION ACTION DOCUMENT Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean [PC Code 006532] U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division September 2010 Bacillus thuringiensis Cry1Ac in MON 87701 Soybean Biopesticide Registration Action Document TABLE of CONTENTS I. OVERVIEW ............................................................................................................................................................ 3 A. EXECUTIVE SUMMARY .................................................................................................................................... 3 B. USE PROFILE ........................................................................................................................................................ 4 C. REGULATORY HISTORY .................................................................................................................................. 5 II. SCIENCE ASSESSMENT ......................................................................................................................................... 6 A. PRODUCT CHARACTERIZATION B. HUMAN HEALTH ASSESSMENT D. ENVIRONMENTAL ASSESSMENT ................................................................................................................. 15 E. INSECT RESISTANCE MANAGEMENT (IRM) ............................................................................................
    [Show full text]
  • Modularity and Evolutionary Constraints in a Baculovirus Gene
    Oliveira et al. BMC Systems Biology 2013, 7:87 http://www.biomedcentral.com/1752-0509/7/87 RESEARCH ARTICLE Open Access Modularity and evolutionary constraints in a baculovirus gene regulatory network Juliana Velasco Oliveira1,3, Anderson Fernandes de Brito1, Carla Torres Braconi1, Caio César de Melo Freire1, Atila Iamarino1 and Paolo Marinho de Andrade Zanotto1,2* Abstract Background: The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results: We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data.
    [Show full text]
  • Pieris Brassicae
    Pieris brassicae Scientific Name Pieris brassicae (L.) Synonyms: Mancipium brassicae Linnaeus Papilio Danaus brassicae Papilio brassicae Linnaeus Pieris anthrax Graham-Smith & Graham-Smith Pieris brassicae brassicae (Linnaeus) Pieris brassicae wollastoni (Butler) Pieris carnea Graham-Smith & Figure 1. P. brassicae adult (Image courtesy of Graham-Smith Hania Berdys, Bugwood.org) Pieris chariclea (Stephens) Pieris emigrisea Rocci Pieris griseopicta Rocci Pieris infratrinotata Carhel Pieris nigrescens Cockerell Pontia brassicae Linnaeus Pontia chariclea Stephens Common Names Large white butterfly, cabbage caterpillar Type of Pest Butterfly Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Pieridae Reason for Inclusion CAPS Target: AHP Prioritized Pest List for FY 2012 Pest Description Egg: “When first laid the eggs are a very pale straw color; within twenty four hours this has darkened to yellow and in at least one subspecies (P. h. cheiranthi Hueb) they are bright orange… a few hours before hatching the eggs turn black and the form of the larva can be seen through the shell” (Gardiner, 1974). Larva: “Length [of the larva is] 40 mm. Body fawn with black patches, yellow longitudinal stripes, covered with short white hairs. First instar head black; final instar head black and gray, frons yellow (Brooks and Knight 1982, Emmett 1980)” (USDA, 1984). Last Update: July 19, 2011 1 Pupa: “Length 20-24 mm, width 5-6 mm, yellow brown marked with black dots (Avidov and Harpaz 1969)” (USDA, 1984). Adult: “Body length 20 mm (Avidov and Harpaz 1969). Antennae black, tips white. Wingspan 63 mm. Wings dorsally white. Forewing tips black; hindwing front margin with black spot. Female forewing with 2 black spots, black dash on each.
    [Show full text]
  • Anticarsia Gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of Formulations, Water Ph, Volume and Time of Application, and Type of Spray Nozzle
    January - March 2002 75 BIOLOGICAL CONTROL Field Efficacy of the Nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of Formulations, Water pH, Volume and Time of Application, and Type of Spray Nozzle MAURO TADEU BRAGA SILVA1 & FLÁVIO MOSCARDI2 1Fundacep Fecotrigo, C. postal 10, 98100-970, Cruz Alta, RS 2Embrapa Soja, C. postal 231, 86001-970, Londrina, PR Neotropical Entomology 31(1): 075-083 (2002) Eficiência do Nucleopoliedrovirus de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) em Campo: Efeito de Formulações do Vírus, pH da Água, Volume e Horário de Aplicação, e Tipo de Bico de Pulverização RESUMO – Avaliou-se o controle de Anticarsia gemmatalis Hübner através do seu nucleopoliedrovirus (AgMNPV), em função de diferentes parâmetros envolvidos com o uso desse inseticida biológico, visando elucidar alguns casos de baixa eficiência em determinadas regiões do País, principalmente no Rio Grande do Sul (RS). O trabalho foi conduzido em quatro safras, de 1994/95 a 97/98, em Cruz Alta – RS, avaliando-se os seguintes fatores sobre a eficiência do AgMNPV: formulações comerciais disponíveis; pH da calda; volume de calda; horário de aplicação; ponta de pulverização; e da mistura do vírus com óleo mineral. As parcelas consistiram de 28 fileiras de soja com 10 m de comprimento e espaçamento de 40 cm, adotando-se delineamento de blocos completamente casualizados, com quatro repetições. As amostragens foram realizadas pelo método do pano, determinando-se o número de lagartas infectadas pelo vírus (LI). As formulações comerciais produzidas pela Nitral, Nova Era, Coodetec e Embrapa controlaram adequadamente a praga, em comparação à testemunha; no entanto, foram significativamente inferiores à preparação do vírus obtida por maceração e filtragem de lagartas, demonstrando que essas formulações necessitam aperfeiçoamento.
    [Show full text]
  • <I>Anticarsia Gemmatalis</I>
    Arthropod Predators of Velvetbean Caterpillar., Anticarsia gemmatalis Hiibner (Lepidoptera: Noctuidae)., Eggs and Larvae KRIS E. GODFREY,' WILLARD H. WHITCOMB, AND JERRY L. STIMAC2 Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611 Environ. Entomol. 18(1): 118-123 (1989) ABSTRACT Arthropod predators of velvetbean caterpillar, Anticarsia gemmatalis Hiib- ner, eggs and larvae were determined using a direct observation technique. Observations of predation events were made on soybean foliage and the ground below the foliage. Predation on eggs and three size classes of larvae is presented as proportional seasonal consumption over 14 to 16 h by each arthropod predator species. On the foliage, Spanogonicus albofas- ciatus (Reuter) (Hemiptera: Miridae) and Geocoris punctipes (Say) (Hemiptera: Lygaeidae) were observed eating velvetbean caterpillar eggs in 1981. For small velvetbean caterpillar larvae, Tropiconabis capsiformis (Germar) (Hemiptera: Nabidae) was the major consumer in 1981, whereas in 1982, G. punctipes and Calleida decora (F.) (Coleoptera: Carabidae) Downloaded from were the major consumers. For medium and large velvetbean caterpillar larvae in 1981, tettigoniids (Orthoptera) consumed the largest proportion. On the ground, the ant Pheidole morrisi Forel (Hymenoptera: Formicidae) was the major consumer of all three size classes of velvetbean caterpillar larvae in 1981. In 1982, the earwig Lab/dura riparia (Pallas) (Der- maptera: Labiduridae) ate the greatest proportion of small velvetbean caterpillar larvae on the ground. http://ee.oxfordjournals.org/ KEY WORDS Insecta, Arachnida, predation PREDICTING THE EFFECT of arthropod predators be used to partition estimates of predator-induced on pest populations is a prerequisite to effective mortality for each predator species (Elvin et al. use of arthropod predators in pest management 1983).
    [Show full text]
  • Detrimental Effect of Rutin on Anticarsia Gemmatalis 1453
    Detrimental effect of rutin on Anticarsia gemmatalis 1453 Detrimental effect of rutin on Anticarsia gemmatalis Clara Beatriz Hoffmann-Campo(1), José Augusto Ramos Neto(2), Maria Cristina Neves de Oliveira(1) and Lenita Jacob Oliveira(1) (1)Embrapa Soja, Caixa Postal 231, CEP 86001-970 Londrina, PR, Brazil. E-mail: [email protected], [email protected], [email protected] (2)Hokko do Brasil Indústria Química e Agropecuária Ltda., Rua Jundiaí, 50, 9o andar, Paraíso, CEP 04001-904 São Paulo, SP, Brazil. E-mail: [email protected] Abstract – Behavioral and nutritional effect of rutin (quercetin 3-O-rutinosídeo) on Anticarsia gemmatalis Hübner (Lep.: Noctuidae), a major soybean defoliator in Brazil, was evaluated from the third instar to pupation. Rutin is one of the flavonol glycosides identified in the leaves of the wild soybean PI 227687. Larval weight and amount of ingested food decreased as rutin concentration in the diet increase. An interactive effect between feeding time and diet (treatment) was observed on insect growth; when larvae fed on pure-diet, feeding time elongation resulted in heavier pupae. Differently, the weight of larvae fed on rutin-diet remained almost stable, in spite of eating for longer. A. gemmatalis growth was negatively influenced by rutin-diet not only by feeding deterrence but also by post-ingestive effect on insect growth, since after adjustment of pupal weight by the amount of ingested food (covariate), the effect of diet remained significant. Rutin negatively influenced A. gemmatalis growth as result of pre-ingestive effect, indicated by reduction in food consumption, and post-ingestive effect, indicated by lower conversion of ingested food into body mass and food assimilation.
    [Show full text]