Some Notes on Measure Theory (2005)

Total Page:16

File Type:pdf, Size:1020Kb

Some Notes on Measure Theory (2005) Some Notes on Measure Theory Chris Preston This version: February 2005 These notes present the material on measures and kernels which are needed in order to read my lecture notes Specifications and their Gibbs states [16]. They could perhaps be used as a general introduction to some parts of measure theory, but the account is somewhat biased and the contents are determined entirely by the kind of results used in [16]. In particular, the topological aspects of measure theory are missing completely. The theory in [16] really only requires an integral for non-negative mappings, and so we also make this restriction here. The disadvantage is then that we have non-negative cones of mappings instead of vector spaces, but the advantage is that the value 1 is much less of a nuisance and in most cases can be regarded as just another number. There are many texts providing a more balanced account of measure theory. The classical text is Halmos [8] and a very good modern book is Cohn [3]; the first course I gave on the subject was based on Taylor [17]. However, the book everyone should look at at least once is Meyer [14]. Chris Preston Pankow February, 2005 Contents 1 Extended real numbers 4 2 Measurable spaces and mappings 7 3 Measures 18 4 The Carath´eodory extension theorem 24 5 Measures on the real line 30 6 How the integral will be introduced 34 7 Partially ordered sets 35 8 Real valued mappings 40 9 Real valued measurable mappings 47 10 The integral 52 11 The Daniell integral 61 12 The Radon-Nikodym theorem 70 13 Image and pre-image measures 76 14 Kernels 82 15 Product measures 88 16 Countably generated measurable spaces 99 17 The Dunford-Pettis theorem 108 18 Substandard Borel spaces 112 19 The Kolmogorov extension property 116 20 Convergence of conditional expectations 122 21 Existence of conditional distributions 129 3 22 Standard Borel spaces 132 23 The usual diagonal argument 137 Bibliography 139 Index 140 1 Extended real numbers + Most of the mappings we will be dealing with take their values in the set R1 of non-negative extended real numbers. In this chapter we list (without proofs) the facts which we need about these numbers. The reader should check through the list to see that there are no surprises. The natural numbers f0; 1; 2; : : :g are denoted by N, the positive natural numbers f1; 2; : : :g by N+. A countable set is one which is either finite or countably infinite (the latter meaning it has the same cardinality as N). + + + Put R = fa 2 R : a ≥ 0g and let R1 = R [ f1g; the operations of addition + + and multiplication on R will be extended to R1 by letting a + 1 = 1 + a = 1 + + for all a 2 R1, a · 1 = 1 · a = 1 for all a 2 R1 n f0g and 0 · 1 = 1 · 0 = 0. As can be easily verified, these extended operations satisfy the usual associative, commutative and distributive laws (without any restriction). + If a; b 2 R1 then a − b is not always defined; however, it is useful to always assign ja − bj a value: This is the usual value if a; b 2 R+ and 1 in all other + cases, which means that j1 − 1j = 1. Let a; b 2 R1 with a ≤ b; then there + exists c 2 R1 with b = a + c, and c is unique unless both a and b are equal to 1. It is convenient to define b − a to be the `real' difference if a; b 2 R+ and to be + 1 otherwise. Thus b = a + (b − a) for all a; b 2 R1 with a ≤ b and b − a = 1 whenever b = 1. + + The usual total order ≤ on R will be extended to a total order on R1 (also + denoted by ≤) by letting a ≤ 1 for each a 2 R1. In particular a ≤ ja − bj + b + and b ≤ ja − bj + a for all a; b 2 R1. Put a ^ b = minfa; bg, a _ b = maxfa; bg + and note that ja − bj = (a _ b − a) + (a _ b − b) for all a; b 2 R1. We use a ≥ b as an alternative notation for b ≤ a. Moreover, a < b means of course a ≤ b but not a = b, and a > b means a ≥ b but not a = b. + + A sequence fangn≥1 from R1 converges to a 2 R if for each " > 0 there exists m ≥ 1 such that ja − anj < " for all n ≥ m. This means exactly that there exists + p ≥ 1 such that an 2 R for all n ≥ p and that the sequence fangn≥p converges + + to a in R. A sequence fangn≥1 from R1 converges to 1 if for each b 2 R there + exists m ≥ 1 such that an ≥ b for all n ≥ m. If fangn≥1 converges to a 2 R1 then a is uniquely determined by fangn≥1; this value a is called the limit of the sequence and will be denoted by limn!1 an, or mostly just by limn an. If fangn≥1 + is a sequence from R1 then the statement limn an = a is short for the statement that the sequence fangn≥1 converges with limit a. + + Let fangn≥1 be a convergent sequence from R1 with a = limn an. If a 2 R then limn ja − anj = 0. However, if a = 1 then ja − anj = 1 for all n ≥ 1. + A sequence fangn≥1 from R1 is said to be increasing if an ≤ an+1 and decreasing if an+1 ≤ an for all n ≥ 1. Each increasing sequence fangn≥1 converges: If there 4 1 Extended real numbers 5 + exists a 2 R with an ≤ a for all n ≥ 1 then limn an is just the limit in R, and + if no such a 2 R exists then limn an = 1. Moreover each decreasing sequence fangn≥1 also converges: Either an = 1 for all n ≥ 1, in which case limn an = 1, or an < 1 for all n ≥ p for some p ≥ 1, and then limn an is just the limit of the sequence fangn≥p in R. + + Let A be a subset of R1; an element a 2 R1 is said to be an upper bound (resp. lower bound) for A if b ≤ a (resp. b ≥ a) for all b 2 A. An upper bound (resp. lower bound) a is called a least upper bound (resp. greatest lower bound) for A if a ≤ b for each upper bound b for A (resp. if a ≥ b for each lower bound b for A). If a least upper bound (resp. greatest lower bound) exists then it is clearly unique and it will be denoted by sup(A) (resp. by inf(A)). + Each non-empty subset A of R1 possesses both a least upper bound and a greatest lower bound. If A is a bounded subset of R+ (i.e., if b is an upper bound for A for some b 2 R+) then sup(A) is the least upper bound of A in R. If A has no upper bound in R+ then sup(A) = 1. If A = f1g then inf(A) = 1. If A =6 f1g then inf(A) is the greatest lower bound of A n f1g in R. + If fangn≥1 is any sequence from R1 and m ≥ 1 then fan : n ≥ mg will be used + to denote the set of values fa 2 R1 : a = an for some n ≥ mg. + If fangn≥1 is an increasing sequence from R1 then limn an is just the least upper bound of its set of values fan : n ≥ 1g. Thus limn an is the unique element a of + + R1 with the properties: (i) an ≤ a for all n ≥ 1 and (ii) if b 2 R1 with b ≤ a and b =6 a then b ≤ an for all large enough n. Similarly, if fangn≥1 is a decreasing + sequence from R1 then limn an is the greatest lower bound of fan : n ≥ 1g, and + therefore limn an is the unique element a of R1 with the properties: (i) an ≥ a + for all n ≥ 1 and (ii) if b 2 R1 with b ≥ a and b =6 a then b ≥ an for all large enough n. + Let fangn≥1 be any sequence from R1 and for n ≥ 1 let bn = supfam : m ≥ ng and cn = inffam : m ≥ ng. Then the sequence fbngn≥1 is decreasing and fcngn≥1 is increasing. The limits limn bn and limn cn are denoted by lim supn an and lim infn an respectively. Then lim infn an ≤ lim supn an, with equality if and only if the sequence fangn≥1 converges. Moreover, if this is the case then lim inf an = lim an = lim sup an : n!1 n!1 n!1 + + + 0 0 A binary operation ? : R1 × R1 ! R1 is said to be monotone if a ? b ≤ a ? b 0 0 whenever a ≤ a and b ≤ b . If ? is monotone and fangn≥1 and fbngn≥1 are + increasing sequences from R1 then fan ? bngn≥1 is also an increasing sequence. A monotone operation ? is defined to be continuous if lim (an ? bn) = lim an ? lim bn n!1 n!1 n!1 1 Extended real numbers 6 + holds for all increasing sequences fangn≥1 and fbngn≥1 from R1. + The operations +, ·, _ and ^ on R1 are all continuous (and so in particular monotone). Moreover, for all a; b 2 R+ the operation (c; d) 7! ac + bd is also continuous. Furthermore, these operation are all finite, where a binary operation + + + ? on R1 is said to be finite if a ? b 2 R for all a; b 2 R .
Recommended publications
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Version of 21.8.15 Chapter 43 Topologies and Measures II The
    Version of 21.8.15 Chapter 43 Topologies and measures II The first chapter of this volume was ‘general’ theory of topological measure spaces; I attempted to distinguish the most important properties a topological measure can have – inner regularity, τ-additivity – and describe their interactions at an abstract level. I now turn to rather more specialized investigations, looking for features which offer explanations of the behaviour of the most important spaces, radiating outwards from Lebesgue measure. In effect, this chapter consists of three distinguishable parts and two appendices. The first three sections are based on ideas from descriptive set theory, in particular Souslin’s operation (§431); the properties of this operation are the foundation for the theory of two classes of topological space of particular importance in measure theory, the K-analytic spaces (§432) and the analytic spaces (§433). The second part of the chapter, §§434-435, collects miscellaneous results on Borel and Baire measures, looking at the ways in which topological properties of a space determine properties of the measures it carries. In §436 I present the most important theorems on the representation of linear functionals by integrals; if you like, this is the inverse operation to the construction of integrals from measures in §122. The ideas continue into §437, where I discuss spaces of signed measures representing the duals of spaces of continuous functions, and topologies on spaces of measures. The first appendix, §438, looks at a special topic: the way in which the patterns in §§434-435 are affected if we assume that our spaces are not unreasonably complex in a rather special sense defined in terms of measures on discrete spaces.
    [Show full text]
  • Resonance Van Hove Singularities in Wave Kinetics
    Resonance Van Hove Singularities in Wave Kinetics Yi-Kang Shi1 and Gregory L. Eyink1;2 (1) Department of Applied Mathematics & Statistics and (2) Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, MD, USA Abstract Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space D = (N − 2)d (d physical space dimension, N the number of waves in resonance) and the degree of degeneracy δ of the critical points. Following Van Hove, we show that non-degenerate singularities lead to finite phase measures for D > 2 but produce divergences when D ≤ 2 and possible breakdown of wave kinetics if the collision integral itself becomes too large (or even infinite). Similar divergences and possible breakdown can occur for degenerate singularities, when D − δ ≤ 2; as we find for several physical examples, including electron-hole kinetics in graphene.
    [Show full text]
  • MARSTRAND's THEOREM and TANGENT MEASURES Contents 1
    MARSTRAND'S THEOREM AND TANGENT MEASURES ALEKSANDER SKENDERI Abstract. This paper aims to prove and motivate Marstrand's theorem, which is a fundamental result in geometric measure theory. Along the way, we introduce and motivate the notion of tangent measures, while also proving several related results. The paper assumes familiarity with the rudiments of measure theory such as Lebesgue measure, Lebesgue integration, and the basic convergence theorems. Contents 1. Introduction 1 2. Preliminaries on Measure Theory 2 2.1. Weak Convergence of Measures 2 2.2. Differentiation of Measures and Covering Theorems 3 2.3. Hausdorff Measure and Densities 4 3. Marstrand's Theorem 5 3.1. Tangent measures and uniform measures 5 3.2. Proving Marstrand's Theorem 8 Acknowledgments 16 References 16 1. Introduction Some of the most important objects in all of mathematics are smooth manifolds. Indeed, they occupy a central position in differential geometry, algebraic topology, and are often very important when relating mathematics to physics. However, there are also many objects of interest which may not be differentiable over certain sets of points in their domains. Therefore, we want to study more general objects than smooth manifolds; these objects are known as rectifiable sets. The following definitions and theorems require the notion of Hausdorff measure. If the reader is unfamiliar with Hausdorff measure, he should consult definition 2.10 of section 2.3 before continuing to read this section. Definition 1.1. A k-dimensional Borel set E ⊂ Rn is called rectifiable if there 1 k exists a countable family fΓigi=1 of Lipschitz graphs such that H (E n [ Γi) = 0.
    [Show full text]
  • Nonlinear Structures Determined by Measures on Banach Spaces Mémoires De La S
    MÉMOIRES DE LA S. M. F. K. DAVID ELWORTHY Nonlinear structures determined by measures on Banach spaces Mémoires de la S. M. F., tome 46 (1976), p. 121-130 <http://www.numdam.org/item?id=MSMF_1976__46__121_0> © Mémoires de la S. M. F., 1976, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journees Geom. dimens. infinie [1975 - LYON ] 121 Bull. Soc. math. France, Memoire 46, 1976, p. 121 - 130. NONLINEAR STRUCTURES DETERMINED BY MEASURES ON BANACH SPACES By K. David ELWORTHY 0. INTRODUCTION. A. A Gaussian measure y on a separable Banach space E, together with the topolcT- gical vector space structure of E, determines a continuous linear injection i : H -> E, of a Hilbert space H, such that y is induced by the canonical cylinder set measure of H. Although the image of H has measure zero, nevertheless H plays a dominant role in both linear and nonlinear analysis involving y, [ 8] , [9], [10] . The most direct approach to obtaining measures on a Banach manifold M, related to its differential structure, requires a lot of extra structure on the manifold : for example a linear map i : H -> T M for each x in M, and even a subset M-^ of M which has the structure of a Hilbert manifold, [6] , [7].
    [Show full text]
  • A Note on the Daniell Integral Rendiconti Del Seminario Matematico Della Università Di Padova, Tome 29 (1959), P
    RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA IAN RICHARDS A note on the Daniell integral Rendiconti del Seminario Matematico della Università di Padova, tome 29 (1959), p. 401-410 <http://www.numdam.org/item?id=RSMUP_1959__29__401_0> © Rendiconti del Seminario Matematico della Università di Padova, 1959, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ A NOTE ON THE DANIELL INTEGRAL Nota (*) di IAN RICHARDS (a. Ca1nbridge, AlaS8.) INTRODUCTION The object of this paper is to show that by making certain simple modifications in the classical formulation of the Daniell theory of integration it is possible to derive the theorems of Fubini, Helly-Bray, and others from the existence and uni- queness theorems which are the core of the Daniell theory. The Daniell theory of integration proves the existence and uniqueness of an extension of an « integral » defined on a « lattice » of functions to a « complete integral » defined on a larger « lattice ». (A lattice L of functions is a vector space satisfying the additional condition that feL implies | f We show here that it is possible to prove the uniqueness (but not the existence) of such an extension under slightly weaker conditions, and that this enables us to derive Fubini’s theorem as a corollary of our uniqueness theorem.
    [Show full text]
  • Fern⁄Ndez 289-295
    Collect. Math. 48, 3 (1997), 289–295 c 1997 Universitat de Barcelona Moderation of sigma-finite Borel measures J. Fernandez´ Novoa Departamento de Matematicas´ Fundamentales. Facultad de Ciencias. U.N.E.D. Ciudad Universitaria. Senda del Rey s/n. 28040-Madrid. Spain Received November 10, 1995. Revised March 26, 1996 Abstract We establish that a σ-finite Borel measure µ in a Hausdorff topological space X such that each open subset of X is µ-Radon, is moderated when X is weakly metacompact or paralindel¨of and also when X is metalindel¨of and has a µ- concassage of separable subsets. Moreover, we give a new proof of a theorem of Pfeffer and Thomson [5] about gage measurability and we deduce other new results. 1. Preliminaries Let X be a Hausdorff topological space. We shall denote by G, F, K and B, respec- tively, the families of all open, closed, compact and Borel subsets of X. Let µ be a Borel measure in X, i.e. a locally finite measure on B. A set B ∈B is called (a) µ-outer regular if µ(B)= inf {µ(G):B ⊂ G ∈G}; (b) µ-Radon if µ(B)= sup {µ(K):B ⊃ K ∈K}. The measure µ is called (a) outer regular if each B ∈Bis µ-outer regular; (b) Radon if each B ∈Bis µ-Radon. A µ-concassage of X is a disjoint family (Kj)j∈J of nonempty compact subsets of X which satisfies 289 290 Fernandez´ ∩ ∈G ∈ ∩ ∅ (i) µ(G Kj) > 0 for each G and each j J such that G Kj = ; ∩ ∈B (ii) µ(B)= j∈J µ (B Kj)for each B which is µ-Radon.
    [Show full text]
  • A Sheaf Theoretic Approach to Measure Theory
    A SHEAF THEORETIC APPROACH TO MEASURE THEORY by Matthew Jackson B.Sc. (Hons), University of Canterbury, 1996 Mus.B., University of Canterbury, 1997 M.A. (Dist), University of Canterbury, 1998 M.S., Carnegie Mellon University, 2000 Submitted to the Graduate Faculty of the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH DEPARTMENT OF MATHEMATICS This dissertation was presented by Matthew Jackson It was defended on 13 April, 2006 and approved by Bob Heath, Department of Mathematics, University of Pittsburgh Steve Awodey, Departmant of Philosophy, Carnegie Mellon University Dana Scott, School of Computer Science, Carnegie Mellon University Paul Gartside, Department of Mathematics, University of Pittsburgh Chris Lennard, Department of Mathematics, University of Pittsburgh Dissertation Director: Bob Heath, Department of Mathematics, University of Pittsburgh ii ABSTRACT A SHEAF THEORETIC APPROACH TO MEASURE THEORY Matthew Jackson, PhD University of Pittsburgh, 2006 The topos Sh( ) of sheaves on a σ-algebra is a natural home for measure theory. F F The collection of measures is a sheaf, the collection of measurable real valued functions is a sheaf, the operation of integration is a natural transformation, and the concept of almost-everywhere equivalence is a Lawvere-Tierney topology. The sheaf of measurable real valued functions is the Dedekind real numbers object in Sh( ) (Scott [24]), and the topology of “almost everywhere equivalence“ is the closed F topology induced by the sieve of negligible sets (Wendt[28]) The other elements of measure theory have not previously been described using the internal language of Sh( ).
    [Show full text]
  • J. Mikusinski • the Bochner Integral Mathematische Reihe Band 55
    J. MIKUSINSKI • THE BOCHNER INTEGRAL MATHEMATISCHE REIHE BAND 55 LEHRBUCHER UNO MONOGRAPHIEN AUS DEM GEBIETE DER EXAKTEN WISSENSCHAFfEN THE BOCHNER INTEGRAL by JAN MIKUSINSKI 1978 SPRINGER BASEL AG CIP-Kurztitelaufnahme der Deutschen Bibliothek Mikusinski, Jan The Bochner integral. - l.Aufl. - Basel, Stuttgart: Birkhäuser, 1978. (Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften: Math. Reihe; Bd. 55) ISBN 978-3-0348-5569-3 ISBN 978-3-0348-5567-9 (eBook) DOI 10.1007/978-3-0348-5567-9 © Springer Basel AG 1978 Originally published by Birkhäuser Verlag Basel New York in 1978 Softcover reprint of the hardcover 1st edition 1978 (Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, Band 55) All rights reserved. No part of this book may be reproduced in any form, by photostat, microfilm, retrieval system, or any other means, without written permission from the publishers. (Pure and Applied Mathematics, A Series of Monographs and Textbooks, Volume 77) Library of Congress Catalog Card Number 77-84176 Preface The theory of the Lebesgue integral is still considered as a difficult theory, no matter whether it is based the concept of measure or introduced by other methods. The primary aim of this book is to give an approach which would be as intelligible and lucid as possible. Our definition, produced in Chapter I, requires for its background only a little of the theory of absolutely convergent series so that it is understandable for students of the first undergraduate course. Nevertheless, it yields the Lebesgue integral in its full generality and, moreover, extends automatically to the Bochner integral (by replacing real coefficients of series by elements of a Banach space).
    [Show full text]
  • The Gap Between Gromov-Vague and Gromov-Hausdorff-Vague Topology
    THE GAP BETWEEN GROMOV-VAGUE AND GROMOV-HAUSDORFF-VAGUE TOPOLOGY SIVA ATHREYA, WOLFGANG LOHR,¨ AND ANITA WINTER Abstract. In [ALW15] an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sense of finite dimensional distributions. Further, if the underly- ing spaces converge Gromov-Hausdorff vaguely, then the processes converge weakly in path space. In this paper we systematically introduce and study the Gromov-vague and the Gromov-Hausdorff-vague topology on the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely related to the Gromov-Hausdorff-Prohorov metric which is defined on different equivalence classes of metric measure spaces. We explain the necessity of these two topologies via several examples, and close the gap between them. That is, we show that convergence in Gromov- vague topology implies convergence in Gromov-Hausdorff-vague topology if and only if the so-called lower mass-bound property is satisfied. Further- more, we prove and disprove Polishness of several spaces of metric measure spaces in the topologies mentioned above (summarized in Figure 1). As an application, we consider the Galton-Watson tree with critical off- spring distribution of finite variance conditioned to not get extinct, and construct the so-called Kallenberg-Kesten tree as the weak limit in Gromov- Hausdorff-vague topology when the edge length are scaled down to go to zero. Contents 1. Introduction 1 2. The Gromov-vague topology 6 3.
    [Show full text]
  • Measure Theory and Integration
    THEORY OF MEASURE AND INTEGRATION TOMASZ KOMOROWSKI 1. Abstract theory of measure and integration 1.1. Notions of σ-algebra and measurability. Suppose that X is a certain set. A family A of subsets of X is called a σ-algebra if i) ; 2 A, ii) if A 2 A then Ac := X n A 2 A, S+1 iii) if A1;A2;::: 2 A then i=1 Ai 2 A. Example 1. The family P(X) of all subsets of a given set X. Example 2. Suppose that A1;A2;::: is a partition of a set X, i.e. Ai \ Aj = ; if S+1 S i 6= i and j=1 Aj = X. Denote by A the family of all sets of the form j2Z Aj, where Z ⊂ f1; 2;:::g. Prove that A forms a σ-algebra. Example 3. Suppose that X is a topological space. Denote by T the family of all open subsets (topology). Then, introduce \ B(X) := A; where the intersection is over all σ-algebras A containing T . It is a σ-algebra and called the Borel σ-algebra. A pair (X; A) is called a measurable space. Any subset A of X that belongs to A is called measurable. A function f : X ! R¯ := R [ {−∞; +1g is measurable if [f(x) < a] belongs to A for any a 2 R. 1 2 TOMASZ KOMOROWSKI Conventions concerning symbols +1 and −∞. The following conventions shall be used throughout this lecture (1.1) 0 · 1 = 1 · 0 = 0; (1.2) x + 1 = +1; 8 x 2 R (1.3) x − 1 = −∞; 8 x 2 R x · (+1) = +1; 8 x 2 (0; +1)(1.4) x · (−∞) = −∞; 8 x 2 (0; +1)(1.5) x · (+1) = −∞; 8 x 2 (−∞; 0)(1.6) x · (−∞) = +1; 8 x 2 (−∞; −)(1.7) (1.8) ±∞ · ±∞ = +1; ±∞ · ∓∞ = −∞: Warning: The operation +1 − 1 is not defined! Exercise 1.
    [Show full text]
  • Conditional Measures and Conditional Expectation; Rohlin’S Disintegration Theorem
    DISCRETE AND CONTINUOUS doi:10.3934/dcds.2012.32.2565 DYNAMICAL SYSTEMS Volume 32, Number 7, July 2012 pp. 2565{2582 CONDITIONAL MEASURES AND CONDITIONAL EXPECTATION; ROHLIN'S DISINTEGRATION THEOREM David Simmons Department of Mathematics University of North Texas P.O. Box 311430 Denton, TX 76203-1430, USA Abstract. The purpose of this paper is to give a clean formulation and proof of Rohlin's Disintegration Theorem [7]. Another (possible) proof can be found in [6]. Note also that our statement of Rohlin's Disintegration Theorem (The- orem 2.1) is more general than the statement in either [7] or [6] in that X is allowed to be any universally measurable space, and Y is allowed to be any subspace of standard Borel space. Sections 1 - 4 contain the statement and proof of Rohlin's Theorem. Sec- tions 5 - 7 give a generalization of Rohlin's Theorem to the category of σ-finite measure spaces with absolutely continuous morphisms. Section 8 gives a less general but more powerful version of Rohlin's Theorem in the category of smooth measures on C1 manifolds. Section 9 is an appendix which contains proofs of facts used throughout the paper. 1. Notation. We begin with the definition of the standard concept of a system of conditional measures, also known as a disintegration: Definition 1.1. Let (X; µ) be a probability space, Y a measurable space, and π : X ! Y a measurable function. A system of conditional measures of µ with respect to (X; π; Y ) is a collection of measures (µy)y2Y such that −1 i) For each y 2 Y , µy is a measure on π (X).
    [Show full text]