AB Method of Irrigation Without Water

Total Page:16

File Type:pdf, Size:1020Kb

AB Method of Irrigation Without Water 1 Article Irrigation after Joseph and my corr 11 14 07 AB Method of Irrigation without Water (Closed-loop water cycle) Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], http://Bolonkin.narod.ru Abstract Author suggests and researches a new revolutionary idea for a closed-loop irrigation method. He offers to cover a given site by a thin closed film with controlled heat conductivity and clarity located at an altitude of 50 – 300 m. The film is supported at altitude by small additional atmospheric overpressure and connected to the ground by thin cables. Authors show that this closed dome allows full control of the weather in a given region (the day is always fine, the rain is only at night, no strong winds). The average Earth (white cloudy) reflectance equals 0.3 - 0.5. That means the Earth loses about 0.3 - 0.5 of the maximum potential incoming solar energy. The dome (having control of the clarity of film and heat conductivity) converts the cold regions to subtropics, hot deserts and desolate wildernesses to prosperous regions with a temperate climate. This is a realistic and cheap method of evaporation-economical irrigation and virtual weather control on Earth at the current time. Key words: Global weather control, gigantic film dome, converting a cold region to subtropics, converting desolate wilderness to a prosperous region. Introduction 1. Precipitation 1. General information about precipitation. The extant amount of water in Earth’s hydrosphere in the current era is constant. The average annual layer of Earth’s precipitation is about 1000 mm or 511,000 km3. 21% of this (108,000 km3) falls on land and 79% (403,000 km3) on oceans. Most of it falls between latitudes 20o North and 20o South. Both polar zones collect only 4% of Earth’s precipitation. The evaporation from the World-Ocean equals 1250 mm (450,000 km3). 1120 mm returns back as precipitation and 130 mm by river inflow. The evaporation from land equals 410 mm (61,000 km3), the precipitation is 720 mm. The land loses 310 mm as river flow to the oceans (47,000 km3). These are average data. In some regions the precipitation is very different. 2. A desert is a landscape form or region that receives very little precipitation. Deserts are defined as areas that receive an average annual precipitation of less than 250 mm (10 in). In the Köppen climate classification system, deserts are classed as (BW). Deserts take up one-third of the Earth's land surface. They usually have a large diurnal and seasonal temperature range, with high daytime temperatures (in summer up to 45 °C or 113 °F), and low night-time temperatures (in winter down to 0 °C; 32 °F) due to extremely low humidity. Water acts to trap infrared radiation from both the sun and the ground, and dry desert air is incapable of blocking sunlight during the day or trapping heat during the night. Thus during daylight all of the sun's heat reaches the ground. As soon as the sun sets the desert cools quickly by radiating its heat into space. Urban areas in deserts lack large (more than 25 °F/14 °C) daily temperature ranges, partially due to the urban heat island effect. Many deserts are shielded in rain by rain shadows, mountains blocking the path of precipitation to the desert. Deserts are often composed of sand and rocky surfaces. Sand dunes called ergs and stony surfaces called hamada surfaces compose a minority of desert surfaces. Exposures of rocky terrain are typical, and reflect minimal soil development and sparseness of vegetation. 2 Bottomlands may be salt-covered flats. Eolian processes are major factors in shaping desert landscapes. Cold deserts (also known as polar deserts) have similar features but the main form of precipitation is snow rather than rain. Antarctica is the world's largest cold desert (composed of about 98 percent thick continental ice sheet and 2 percent barren rock). The largest hot desert is the Sahara. Deserts sometimes contain valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Rain does fall occasionally in deserts, and desert storms are often violent. A record 44 millimeters (1.7 in) of rain once fell within 3 hours in the Sahara. Large Saharan storms may deliver up to 1 millimeter per minute. Normally dry stream channels, called arroyos or wadis, can quickly fill after heavy rains, and flash floods make these channels dangerous. Though little rain falls in deserts, deserts receive runoff from ephemeral, or short-lived, streams fed considerable quantities of sediment for a day or two. Although most deserts are in basins with closed or interior drainage, a few deserts are crossed by 'exotic' rivers that derive their water from outside the desert. Such rivers infiltrate soils and evaporate large amounts of water on their journeys through the deserts, but their volumes are such that they maintain their continuity. The Nile River, the Colorado River, and the Yellow River are exotic rivers that flow through deserts to deliver their sediments to the sea. Deserts may also have underground springs, rivers, or reservoirs that lay close to the surface, or deep underground. Plants that have not completely adapted to sporadic rainfalls in a desert environment may tap into underground water sources that do not exceed the reach of their root systems. Lakes form where rainfall or meltwater in interior drainage basins is sufficient. Desert lakes are generally shallow, temporary, and salty. Because these lakes are shallow and have a low bottom gradient, wind stress may cause the lake waters to move over many square kilometers. When small lakes dry up, they leave a salt crust or hardpan. The flat area of clay, silt, or sand encrusted with salt that forms is known as a playa. There are more than a hundred playas in North American deserts. Most are relics of large lakes that existed during the last ice age about 12,000 years ago. Lake Bonneville was a 52,000 kilometers² (20,000 mi²) lake almost 300 meters (1000 ft) deep in Utah, Nevada, and Idaho during the Ice Age. Today the remnants of Lake Bonneville include Utah's Great Salt Lake, Utah Lake, and Sevier Lake. Because playas are arid landforms from a wetter past, they contain useful clues to climatic change. When the occasional precipitation does occur, it erodes the desert rocks quickly and powerfully. Winds are the other factor that erodes deserts—they are slow yet constant. A desert is a hostile, potentially deadly environment for unprepared humans. The high heat causes rapid loss of water due to sweating, which can result in dehydration and death within days. In addition, unprotected humans are also at risk from heatstroke and venomous animals. Despite this, some cultures have made deserts their home for thousands of years, including the Bedouin, Touareg and Puebloan people. Modern technology, including advanced irrigation systems, desalinization and air conditioning have made deserts much more hospitable. In the United States and Israel, desert farming has found extensive use. The Great Sandy Desert has nearly all its rain during from monsoonal thunderstorms or the occasional tropical cyclone rain depression. Thunderstorm days average 20-30 annually through most of the area (Burbidge 1983) although the desert has fairly high precipitation rates due to the high rates of evaporation this area remains an arid environment with vast areas of sands. Other areas of the world, which see these rare precipitation events in drylands, are Northwest Mexico, South West America, and South West Asia. In North America in the Sonoran and 3 Chihuahuan desert have received some tropical rainfall in the last 10 years. Tropical activity is rare in all deserts but what rain does arrive here is important to the delicate ecosystem existing. Fig.1. Mahktesh Gadol, an erosional basin in the Negev Desert of southern Israel.213 kb. 3.Arid. In general terms, the climate of a locale or region is said to be arid when it is characterized by a severe lack of available water, to the extent of hindering or even preventing the growth and development of plant and animal life. As a result, environments subject to arid climates tend to lack vegetation and are called xeric or desertic. The expression 'available water' refers to water in the soil in excess to the wilting point. The air over a hot desert may actually contain substantial amounts of water vapor but that water may not be generally accessible to plants, except for very specialized organisms (such as some species of lichen). 'Lack of water' refers to use by plants. The water that is actually present in the environment may be sufficient for some species or usages (such as climax vegetation), and grossly insufficient for others. Aridity, the characteristic nature of arid climates, may thus depend on the use of the land. Regards to the presence of life, what is more important than the degree of rainfall is the fraction of precipitation that is not quickly lost through evaporation or runoff. Attempts to quantitatively describe the degree of aridity of a place has often led to the development of aridity indexes. There is no universal agreement on the precise boundaries between classes such as 'hyper-arid', 'arid', 'semi-arid', etc. If different classification schemes and maps differ in their details, there is a general agreement about the fact that large areas of the Earth are considered arid. These include the hot deserts located broadly in sub-tropical regions, where the accumulation of water is largely prevented by either low precipitations, or high evaporation, or both, as well as cold deserts near the poles, where water may be permanently locked in solid forms (snow and ice).
Recommended publications
  • Refurbishing the Carousel Irrigation System
    p REFURBISHING THE CAROUSEL IRRIGATION SYSTEM Marcello Nicoletti, Christina Steele, Mason Kolb Isa Bar-On, Advisor Buki Katz, Sponsor February 24, 2019 This report presents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects program at WPI, please see https://www.wpi.edu/academics/ugradstudies/project-learning.html Page | 1 Abstract This project aimed to refurbish the Southern Arava Research and Development Station’s non-functioning Carousel Irrigation System. We assessed each subsystem and completed a full system analysis to identify problem areas. This team was able to repair and suggest improvements to this machine, which enables the R&D Station with the power that will increase the success of local farmers in the global produce market. Page | 2 Acknowledgements This project would not have been possible without the opportunity provided to us by Buki Katz, manager of the Arava Research and Development Station. In addition, we would like to thank everyone else at the Station for always providing answers to our questions, especially Ehud Zeelim, Gilad Hurvits, and Daryl Gillett. Repairing the Carousel Irrigation System was made possible with the support Crystal Vision’s Ra’anan Shema and Muki Telman. Without their support, this project would not have reached its current level of success. We would also like to thank Professor Isa Bar-On for advising this project. Her steady guidance and thoughtful suggestions kept our group moving forward with new possibilities and ideas.
    [Show full text]
  • Cover Crops for High-Desert Farming Systems in Idaho
    BULLETIN 889 Cover Crops for High-Desert Farming Systems in Idaho Lauren Hunter, Christi Falen, and Amber Moore Introduction A cover crop is any crop grown to provide living ground cover. It can be planted with the main crop or in rotation with it. Growing cover crops is a best management practice to help minimize soil erosion, prevent nutrient leaching, provide nitrogen (N) for subsequent cash crops, suppress weeds, sequester carbon, increase crop diversity, and provide beneficial insect habitats. In Idaho, cover crops can be planted in spring, summer, or fall and rotated with a variety of crops, including barley, alfalfa, potato, sugar beets, beans, and vegetables. By planting cover crops, Idaho producers benefit from Figure 1. A cover crop mixture of canola, triticale, clover, and vetch the following: helps to scavenge nutrients, increase organic matter, fix N, and control weeds. This multi-species cover crop was planted in • Lower N fertilizer costs Lincoln County, Idaho, following grain harvest. • Higher soil organic matter contents turnip, mustard, and canola). Depending on your • Less wind erosion cropping system, the species can be mixed to achieve • Scavenging and retention of soil nutrients multiple management goals. • Weed or insect control For additional general information on cover crop seeding, refer to “Recommended Cover Crop Seeding • Production of a dual-purpose alternative forage Methods and Tools,” which is listed in the references This guide features optimal cover crops for high-desert section. farming systems in the intermountain West under irrigated or low-moisture conditions. The specific Nitrogen and Organic Matter species and varieties listed in this publication were Cover crop selection should be based on the cropping tested under Idaho growing conditions through system’s needs, such as improving soil conditions or numerous on-farm research trials.
    [Show full text]
  • The New Water Czars by Daniel Kraker
    The New Water Czars by Daniel Kraker A historic water deal could give an impoverished Indian community a path back to its roots — and turn it into one of the West’s next big power brokers Thirty miles south of downtown Phoenix, past the rugged South Mountains rising out of the city’s southern edge, past the acres of asphalt and the 10- lane highways, the city stops abruptly at the bone-dry bed of the Gila River. On the other side of the riverbed, where you might expect to find desert saguaro and cholla, emerald green farm fields blur into the horizon: perfectly flat rectangles laid out one after the other, separated by canals and irrigation Pima Indian Francis Jones irrigates cotton at ditches into a gigantic crossword puzzle-like grid. Gila River Farms. Mark Henle/The Arizona Republic Here, on the 375,000-acre Gila River Indian Community, Pima and Maricopa Related Articles Indians tend fields of alfalfa, cotton, wheat and vegetables, groves of citrus A tempered victory The Gila River Indian and olive trees, and even giant ponds full of tilapia and shrimp. The Community in Arizona is on the verge of a community’s 16,000-acre farm, and a handful of smaller farms operated by huge and historic water rights victory, but tribal members, are sustained by more than 200,000 acre-feet of water, even the most successful Indian crusades funneled every year from the Gila, Salt and Colorado rivers, or pumped from for water are always compromises. underground aquifers. (An acre-foot is one year’s worth of water for a family of four.) Tribe defeated a dam and won back its water The Fort McDowell Yavapai Nation, which defeated a dam that would have Already, the Gila River Indian Community is one of the largest agricultural flooded tribal farmland, uses water from operations in southern Arizona.
    [Show full text]
  • TUMBLEWEED RANCH Program Plan
    TUMBLEWEED RANCH Program Plan prepared for David E. McDowell City of Chandler - Community Services Department - Park Development & Operations Manager by Nancy L. Dallett Projects in the Public lnterest May 2000 Tumbleweed is in the goosefoot family Latin name: Salsola tragus English names: Russian thistle, tumbleweed, wind witch, leap the field Spanish names: chamizo volador (flying bush), maromero Description: Russian thistle is a nearly spherical annual herb, usually about 2 feet tall, but more than twice that in favorable conditions. The threadlike leaves are spine-tipped. The dried plant breaks from its root and blows across the ground, dispersing seeds as it tumbles. Range: The plant is native to Eurasia, but now occurs all over western North American in disturbed soils Notes: Though it's an integral part of Western lore, tumbleweed is an exotic, very harmful weed. (The familiar song 'Tumbling Tumbleweeds" was written in Tucson and first published as a poem in a University of Arizona literary quarterly. The Sons of the Pioneers, a singing group of the 1940s, made the song popular and retired to Tucson 40 years later.) Tumbleweed was first noticed in South Dakota in the 1880s, brought in as a contaminant in crop seeds from Europe. By the tum of the century it had spread to the Pacific coast and the Mexican border. lt has become a troublesome pest in disturbed soils such as agricultural fields and graded road shoulders. lt is rare or absent in undisturbed habitat. ln some naturally unstable habitats, such as sand dunes, Russian thistle has become the dominant plant in crowding out native species.
    [Show full text]
  • Irrigating Desert Land Nevada Agriculture and Water Series Grade Levels
    Irrigating Desert Land Nevada Agriculture and Water Series What are the Methods Used to Irrigate Desert Land? Grade Levels: 3-5 Purpose: Students will understand the different irrigation methods farmers use to grow crops, technology that maximizes water use and conservation practices used to maintain and improve water quality. Materials: Interest Approach • Umbrella • Towel • Spray bottle of water Activity 1 • Two pieces of cloth or 2 paper towel sheets • 1 zip lock bag • Small tray Activity 2 • 1 large container for holding water • 2 smaller containers to collect water • Small paper cup per student • Water Activity 3 • Handout: Irrigation methods cards, cut out 1 set per small group • Worksheet: Irrigation Methods Venn Diagram • Videos & worksheets on irrigation tools and careers. Activity 4 • Assorted construction materials: straws, toothpicks, cups, plastic bottles, cardboard, boxes, buttons, mini wheels, etc. • Tape • Water bottle to test model systems • Worksheet: Design a Model Irrigation System Vocabulary: • Acre • Evaporation • Natural Resources • Aqueduct • Extraction • Precipitation • Canal • Ground water • Reservoir • Crop • Irrigation • Surface Water • Efficient Water Use • Irrigation Diversion agri.nv.gov/aglit page | 1 Irrigating Desert Land Nevada Agriculture and Water Series Background Agricultural Connections: Water is a natural resource critical to agriculture. Even though most of the Earth is made up of water, only a small fraction is usable for man. Irrigation has been around for as long as humans have been cultivating plants. Farmers use water conservation practices such as irrigation with moisture sensors, conservation tillage, and riparian areas to help improve water efficiency. Agriculture accounts for about 85 percent of United States water consumption. Although agriculture accounts for a large portion of our water supply, large-scale farming could not provide food for the world's large populations without the irrigation of crop fields.
    [Show full text]
  • Desert Greening
    Desert greening Desert greening is the process of man-made reclamation of deserts for ecological reasons (biodiversity), farming and forestry, but also for reclamation of natural water systems and other ecological systems that support life. The term "desert greening" is intended to apply to both cold and hot arid and semi-arid deserts (see Köppen climate classification system). It does not apply to ice capped or permafrost regions. Desert greening has the potential to help solve global water, energy, and food crises. It pertains to roughly 32 million square A satellite image of the Sahara, the kilometres of land. world's largest hot desert and third largest desert after Antarctica and the Arctic. Contents History Methods Water Water distribution Side effects Trees Example See also References External links History Methods Managed intensive rotational grazing Holistic management Landscaping methods to reduce evaporation, erosion, consolidation of topsoil, sandstorms, temperature and more Permaculture in general - harvesting runoff rainwater to grow plant communities polyculture, composting or multitrophic agriculture Planting trees (pioneer species) and salt-loving plants (halophytes), such as Salicornia Regeneration of salty, polluted, or degenerated soils Floodwater retention and infiltration (flood control)[1] Greenhouse agriculture Seawater farming like done by the Seawater Foundation Inland mariculture[2] Prevention of overgrazing and firewood use Planting trees with dew and rain harvesting technology like the Groasis Waterboxx. Farmer-managed natural regeneration Water Desert greening is more or less a function of water availability. If sufficient water for irrigation is at hand, any hot, cold, sandy or rocky desert can be greened. Water can be made available through saving, reuse, rainwater harvesting, desalination, or direct use of seawater for salt-loving plants.
    [Show full text]
  • Israel's Agriculture in the 21St Century by Jon Fedler
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Israel's Agriculture in the 21st century by Jon Fedler Jon Fedler is the former editor of Israel Agritech Magazine and currently edits the quarterly agro- technology newsletter Innovation. A combination of sophisticated, applied science, rugged determination and government support have helped Israel's farmers to modernize and adapt to changing geopolitical, market and climatic conditions, giving them a strong base from which to proceed in the coming decades. Israel's agriculture continues to thrive, and supplies most of the country's food needs, though profitability in export sectors has declined sharply in recent years. Among the numerous problems the crop-growing sectors have contended with since the State was founded, water scarcity remains the principal - and growing - threat. Nevertheless the ongoing introduction of new and recycled water sources, coupled with altered irrigation methods and more water-efficient crops, promises long-term security. By the year 2020 Israel's population is expected to grow by about a third, to 8.5 million. This will cause huge increases in demand for agricultural produce and products; but urban use of land and water will also increase enormously. The amount of fresh water allocated for agriculture was reduced radically, by 50 percent (to 580 million cubic meters), in 2000. By 2020 it is unlikely to exceed this amount, and may well be considerably less. At the same time, the amount of suitable land available for farming (360,000 hectares) will also be some 18 percent less than at present.
    [Show full text]
  • Laveen Village Historic Property Survey (2007)
    City of Phoenix Historic Preservation Office Laveen Village Historic Property Survey Prepared By: Alex Bethke May 2007 The City of Phoenix Historic Preservation Office Laveen Village Historic Property Survey Prepared by: Alex Bethke Consulting Historian, Public History graduate student at Arizona State University For: City of Phoenix Historic Preservation Office 200 W. Washington St. 17th Floor Phoenix, AZ 85003 May 2007 Cover Photos: Top- Laveen Store, (c. 1940s) from the corner of 51st Avenue and Dobbins. From Laveen Centennial History by Betty Accomazzo, ed. Bottom- Looking west on Dobbins, west of 27th Avenue, 2006. Photo by author. Laveen Village Historic Property Survey Table of Contents List of Illustrations and Maps …………………………………………………………………… ii Acknowledgements ………………………………………………………………………..…… iii Introduction …………………..…………...……………………………………………..……… iv Research Design ………………………………………………………………...……… vi Timeline ……………………………………………..………………………….…...………… viii Historic Context ……………………………….………………………………………………… 1 Physical Description ………………….……………..……………….………………….. 1 Prehistory ..…….…………………………….………………….………..……………… 5 Early Pioneers and Explorers …………………………………….………..…………….. 7 Initial Settlement: 1880-1911 ………………….……………………….……………… 11 The Foundation is Laid: 1911-1929 ……………………………….…………………… 17 Hard Times Form Community: 1929-1945 …………………….…...…………………. 33 Apart From the Metropolis: 1945-1972 …………………………….……….……….… 37 Conclusion ………………………………………………….……………….…………. 40 Notes ………………………………..………………………………………….………. 41 Bibliography ……….……………….………………………………………………………..…
    [Show full text]
  • Tucson, Arizona an International Culinary Destination
    Tucson, Arizona AN INTERNATIONAL CULINARY DESTINATION Application for UNESCO Designation as a City of Gastronomy 2014 1 ACKNOWLEDGMENTS This nomination of the City of Tucson as a UNESCO City of Gastronomy was made possible by the City of Tucson, Santa Cruz Valley Heritage Alliance, and University of Arizona Southwest Center. Our media partner is Edible Baja Arizona. The description of gastronomical resources herein is a preliminary summary of Tucson’s qualifications as a City of Gastronomy. This document will be a resource guide as we begin to implement projects and programs affiliated with the City of Gastronomy designation. PRIMARY AUTHORS Gary Nabhan, Ph.D. University of Arizona, Southwest Center and Sabores Sin Fronteras Rafael de Grenade, Ph.D. University of Arizona, Udall Center for Studies in Public Policy Jonathan Mabry, Ph.D. City of Tucson, Office of Integrated Planning (Historic Preservation) and Santa Cruz Valley Heritage Alliance Vanessa Bechtol, M.S. Santa Cruz Valley Heritage Alliance ASSEMBLED BY Vanessa Bechtol, M.S. Santa Cruz Valley Heritage Alliance GRAPHIC DESIGN Katherine Roberts City of Tucson, Office of Integrated Planning CONTRIBUTORS Maribel Alvarez Laurel Bellante Doug Biggers Jim Griffith Dan Judkins Megan Kimble James MacAdam PHOTO COURTESY OF CITY OF TUCSON PHOTO CREDITS FRONT COVER Top row (left to right): “Prickly Pear Fruit” courtesy of City of Tucson 2nd row (left to right): “Produce” Vanessa Bechtol “Downtown Tucson Looking West” courtesy of City of Tucson 3rd row (left to right): “Janos in Garden” courtesy
    [Show full text]
  • Sonorensis ARIZONA-SONORA DESERT MUSEUM INTRODUCTION Linda M
    Sonorensis ARIZONA-SONORA DESERT MUSEUM INTRODUCTION Linda M. Brewer Editor, Sonorensis, Peter Warren Peter Sonorensis Arizona-Sonora Desert Museum Jillian Cowles ARIZONA-SONORA DESERT MUSEUM 2016 Food. It is essential for survival. It is the basis of health, a source of sensual pleasure and endless creativity, as well as NS/S an integral part of our economy. Last year, the City of Tuc- Volume 36 , Number 1 son, the University of Arizona’s [UA] Southwest Center and Winter 2016 The Arizona-Sonora Desert Museum College of Social and Behavioral Sciences, with the support Co-founded in 1952 by of Edible Baja Arizona magazine and other contributors, sub- M. A. Burgess A. M. CEAC CEAC Arthur N. Pack and William H. Carr mitted an application to UNESCO for designation of Tucson Craig Ivanyi as a “City of Gastronomy” in the United Nations Creative Cit- Executive Director ies Network. You might ask, Why? What good is it? And how does Tucson merit this title? Debra Colodner, Ph.D. The application they put together under Jonathan Mabry’s Director, Conservation Education and Science Department pen says it all. Here are a few short excerpts from that document: Contents Brewer M. L. Burgess A. M. Kim Franklin, Ph.D. Kim Franklin • Tucson has the longest [continuous] agricultural history in the Above, and clockwise: Las Milpitas, an urban community farm run by the Community Food Bank of Southern Arizona; Bumble bee (Bombus sonorus); Mesquite experts Dr. Richard Felger and Clifford Pablo at 2014 Co-Editor 1 Introduction [United States]. Its distinctive cuisine has developed from more Mesquite Conference; Cattle watering, Sonora, Mexico; Tomato rows in a UA CEAC greenhouse; Local produce at farmers market.
    [Show full text]
  • A History of Land Use in the California Desert Conservation Area
    BLM LIBRARY 88047584 A HIS fi tY OF LA DHlSE INTH CALIF MA SERT LOS ANGELES QH 76.5 L* SAN DIEGO A **^^ / .C2 W478 1978 1 WESTEC Services, Inc 3211 Fifth Avenue San Diego, CA 92103 W ,f A HISTORY OF LAND USE IN THE CALIFORNIA DESERT CONSERVATION AREA CONTRACT NO. YA-5 1 2-RFP7- 1 4 PREPARED FOR: DESERT PLANNING STAFF BUREAU OF LAND MANAGEMENT U.S. DEPARTMENT OF THE INTERIOR 3610 CENTRAL AVENUE, SUITE 402 RIVERSIDE, CALIFORNIA 92506 PREPARED BY: WESTEC SERVICES, INC. 3211 FIFTH AVENUE SAN DIEGO, CALIFORNIA 92103 FRANK NORRIS HISTORICAL GEOGRAPHER RICHARD L. CARRICO PROJECT ARCHAEOLOGIST AUGUST 1978 TABLE OF CONTENTS Chapter Title Page Summary v Preface x ^ 1 Pre-Contact Native American Knowledge and Use of the Land 2 2 The 1540-1846 Period: Spanish and American Exploration and the Opening of the Desert 15 3 The 1846-1868 Period: Americans in the Desert; Exploration, Railroad Surveys and Military Activity 31 4 The 1868-1885 Period: Initial Mining and Railroad Impacts Occur 43 5 The 1885-1895 Period: Mining Production Continues While Homesteading Develops, Particularly in the Antelope Valley 51 6 The 1895-1907 Period: Agriculture Booms in the California Desert; Mining Discoveries Spread to New Areas as New Railroads Make Ore Sites Accessible 57 The 1907-1917 Period: Mining Impacts Continue While Homesteading Develops 65 TABLE OF CONTENTS (Continued) Chapter Title Page 8 The 1917-1925 Period: Highway Settlements Develop; Home steading and Other Activities Slowly Decline 75 9 The 1925-1932 Period: Highway Settlements Develop, While the Amenities
    [Show full text]
  • Planned Cities on the Indus • Describe Indus Valley Cities and Culture
    wh10te-010203-0044-0049 8/2/03 11:07 AM Page 44 LESSON PLAN 3 OBJECTIVES Camel rider at Giza Pyramids Chinese Han Dynasty tile painting • Describe the impact of geography on in Egypt the Indus Valley culture. Planned Cities on the Indus • Describe Indus Valley cities and culture. • List theories about the decline of the Indus Valley civilization. MAIN IDEA WHY IT MATTERS NOW TERMS & NAMES INTERACTION WITH The culture of India today has • subcontinent • Harappan FOCUS & MOTIVATE ENVIRONMENT The first Indian its roots in the civilization of the • monsoon civilization civilization built well-planned early Indus cities. Point to the chalkboard. Ask what some- cities on the banks of the one can learn about our culture from this Indus River. artifact. Explain that archaeologists have The great civilizations of Mesopotamia and Egypt rose little more than this from the Indus SETTING THE STAGE and fell. They left behind much physical evidence about their ways of life. This Civilization. (Possible Answers: use tools, is the case in what today is the area known as Pakistan and part of India where have schools, people can write) another civilization arose about 2500 B.C. However, historians know less about its origins and the reasons for its eventual decline than they do about the origins INSTRUCT and decline of Mesopotamia and Egypt, because the language of the culture has not been translated. The Geography of the Indian TAKING NOTES The Geography of the Indian Subcontinent Subcontinent Drawing Conclusions Use the graphic organizer Geographers often refer to the landmass that includes India, Pakistan, and Bangladesh as the Indian .
    [Show full text]