Heritage Dammed

Total Page:16

File Type:pdf, Size:1020Kb

Heritage Dammed Heritage Dammed Water Infrastructure Impacts on World Heritage Sites and Free Flowing Rivers Draft for Comments Presented at the World Hydropower Congress May 2019 Many civil society groups and individuals contributed to this report, including: World Heritage Watch CSO Network (int.) Rivers without Boundaries (int. ) World Heritage Watch (Germany) BROB -Buryat Regional Organization for Baikal (Russia) Greenpeace (Russia) International Rivers (USA) Save the Tigris Campaign (int.) Affected Citizens of Teesta, (India) CEE Bankwatch Network (Georgia) Save the Blue Heart of Europe Campaign (Balkans, EU) Friends of the Earth US WALHI Wahana Lingkungan Hidup Indonesia Karnali Expedition (Nepal) Orhid SOS (North Macedonia) Fundación Ambiente y Recursos Naturales - FARN (Argentina) Stimson Center (USA) China Dialogue (UK, China) The Third Pole (UK) Daursky Biosphere Reserve (Russia) WWF (Russia) Pacific Institute of Geography (Russia) ALERT (int.) Research Institute for Integrated Water Management and Protection (Russia) Gabriel Lafitte (Australia) Jennie Sutton (Russia) Shweta Wagh (India) Alex Kemman (Netherlands) Dr. Barnaby Joseph Dye (UK) Geoff Law (Australia) Some local collaborators in several countries chose to remain anonymous. Front cover: Image of the Glen Canyon Dam on Colorado River by Christian Mehlführer/Chmehl @Wikimedia, uploaded from https://upload.wikimedia.org/wikipedia/commons/4/4f/Glen_Canyon_Dam_MC.jpg 0 Heritage Dammed Water Infrastructure Impacts on World Heritage Sites and Free Flowing Rivers Civil Society Report to the UNESCO World Heritage Committee and Parties of the World Heritage Convention Draft for Comments Presented at the World Hydropower Congress Compiled by the Rivers without Boundaries International Coalition and World Heritage Watch with contributions from 25 civil society organizations and affected local communities around the world. May 2019 1 2 Table of Contents Introduction ...................................................................................................................................... 4 Part I. Dams' Damage ............................................................................................................................ 9 Water Infrastructure Impacts on the World Heritage Sites - Growing Problems? ........................... 9 Relevant Decisions of the World Heritage Committee ................................................................... 14 The List of the World Heritage Properties Threatened by Water Infrastructure ........................... 17 African Countries Are Yet to Learn the Lessons from the Lake Turkana Destruction ..................... 20 Stiegler’s Gorge Dam, Tanzania ...................................................................................................... 23 Can Tasmania Wilderness Heritage Fuel the Battery of the Nation? ............................................. 29 Sumatra’s Last Jungles: Protecting and Enhancing the Tropical Rainforest Heritage of Sumatra .. 32 Great Leaping Tiger Dammed ......................................................................................................... 37 Cumulative Dam Impacts Threaten the Chitwan National Park ..................................................... 42 Sikkims Vanishing Rivers: Ongoing Destruction and Impending Threats. ....................................... 45 Lake Baikal World Heritage - a Victim of Climate Change and Hydropower .................................. 49 The Mesopotamia Marshes in Peril ................................................................................................ 53 Upper Svaneti – Upper Enguri River Basin under Threat ................................................................ 56 Lake Ohrid and Hydropower ........................................................................................................... 61 Beyond the Dams: the Impact of the Cóndor Cliff – Barrancosa Hydropower Project .................. 63 Part II. Wild Rivers ............................................................................................................................... 67 If We Value Free Flowing Rivers - They Should Be Protected Now ................................................ 67 The Congo River Ecological Values under Threat from Grand Inga Hydropower Scheme ............. 71 Sustaining the Heartbeat of the Mekong Basin .............................................................................. 76 Wild Floods in the Amur River Basin ............................................................................................... 80 The Karnali River – Nepal’s Last, Most Pristine Free-Flowing River ................................................ 84 The Greater Zab: The Last Free River of Mesopotamia .................................................................. 88 The Europe’s Last Wild River .......................................................................................................... 91 Dam Decommissioned - River Heritage Revived? ........................................................................... 95 Olympic National Park, Dam Removal Cost and Benefits. USA. 2012 ......................................... 95 Shiretoko - Flood Control Benefits Reassessed. Japan, 2018 ...................................................... 96 The Construction and Destruction of the Shengxing Power Station. China, 2018...................... 97 Demolishing Dams will Help Build an Ecological Civilization. China, 2019. ................................ 98 Part III. Recommendations ................................................................................................................ 100 Rivers, Dams and Heritage - How Can We Solve the Conundrum? .............................................. 100 Instead of Conclusion: The Curse of Hydropower? ....................................................................... 106 3 Introduction Free-flowing Amur River forming the Sino-Russian border (Taipinggou National Nature Reserve) We compiled this volume to share information on the immense values of free flowing rivers, as well as our concerns about a difficult relationship between this natural and cultural heritage of humankind and unsustainable water infrastructure. As our world rapidly loses its natural wonders and riches, rivers and other freshwater ecosystems become the most threatened elements of the Planet's natural (and cultural) diversity. Water infrastructures: dams, dykes, canals, etc. are the most powerful human-induced factors in degrading river ecosystems because their development forever changes the morphological character and hydrological patterns of natural rivers and lakes. We are in the middle of a great crisis and should undertake urgent efforts for protection of our freshwater heritage. Fresh water is literally the source of life on Earth: despite occupying 1% of terrestrial surface it hosts up to 10% of known animals and about one-third of all known vertebrate species. By today scientists have identified at least 125 000 species associated with freshwater habitats and this number grows rapidly, due to new discoveries1. The Lake Baikal alone hosts over 2500 species of aquatic life, despite being situated in a harsh boreal region2. Natural freshwater ecosystem processes sustain our lives on earth: transport and purify water, shape and nurture fertile floodplains, ensure multiplication and migration of the enormous fish stocks we feed upon, produce a multitude of other crucial ecosystem services. River valleys carved by watercourses are the favorite habitats of the Homo sapiens, where most of our civilizations evolved. Many people still revere moving waters as sacred, some of us entrust to rivers the remains of their dead, most of us bathe in sacred waters to celebrate religious rebirth. The encroachment on freshwater conservation values increases at the highest rate because natural rivers are an increasingly scarce resource with many values and interests competing for them. The remaining few free-flowing river ecosystems are being rapidly clogged by new dams and other infrastructure projects, polluted and diverted by growing cities and spreading agriculture, overfished and overhunted by growing populations, who are rapidly forgetting 4 the land ethics that helped in the past to live in harmony with nature. Climate change as a common denominator exacerbates almost every river-related problem. The world is losing freshwater biodiversity at a rate twice faster than that of terrestrial or marine species. According to the Zoological Society of London and the WWF International, in less than half a century, from 1970 to 2014, the average abundance of 3,358 freshwater populations representing 880 species monitored across the globe declined by 83%.3 Recent research shows that from 1889 to 2010 in North America alone at least 57 species of freshwater fish went extinct which is a rate at least 877 times faster than what could be considered a natural evolutionary phenomenon (one extinction in 3 million years)4 . A further 37% of freshwater fish that have been assessed by the International Union for the Conservation of Nature are also classified as being under threat of extinction and decline. Infrastructure development, especially dams, has caused a dramatic decline in the number of connected, free-flowing rivers; currently, there are more than 60,000 large dams worldwide, which cause a diverse array of negative impacts such as disruption of the natural flow regime, disconnection of the single river ecosystem, change
Recommended publications
  • Visualizing Hydropower Across the Himalayas: Mapping in a Time of Regulatory Decline
    HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies Volume 34 Number 2 Article 9 December 2014 Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline Kelly D. Alley Auburn University, [email protected] Ryan Hile University of Utah Chandana Mitra Auburn University Follow this and additional works at: https://digitalcommons.macalester.edu/himalaya Recommended Citation Alley, Kelly D.; Hile, Ryan; and Mitra, Chandana. 2014. Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline. HIMALAYA 34(2). Available at: https://digitalcommons.macalester.edu/himalaya/vol34/iss2/9 This work is licensed under a Creative Commons Attribution 3.0 License. This Research Article is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline Acknowledgements Earlier drafts of this paper were presented at the BAPA-BEN International Conference on Water Resources in Dhaka, Bangladesh in 2013 and for the AAA panel on Developing the Himalaya in 2012. The authors appreciate the comments and support provided by members who attended these sessions. Our mapping project has been supported by the College of Liberal Arts and the Center for Forest Sustainability at Auburn University. This research article is available in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies: https://digitalcommons.macalester.edu/himalaya/vol34/iss2/9 Visualizing Hydropower across the Himalayas: Mapping in a time of Regulatory Decline Kelly D.
    [Show full text]
  • Three Gorges Dam Hydroelectric Power Plant
    Three Gorges Dam Hydroelectric Power Plant The Three Gorges Dam Project (TGP) is the world's largest hydropower complex project located in one of the three gorges of the Yangtze River: the Xilingxia Gorge in Hubei province, China. The gorge controls approximately one million square kilometres of drainage area and averages a runoff of 451 billion cubic metres annually. China Three Gorges Corporation (CTGPC) acts as the legal entity for TGP and is responsible for the construction, operation and financing of the project. Construction on the Three Gorges Dam was completed in 2008. The dam stands 185m high and 2,309m wide, making it the world's largest hydro plant, well ahead of Brazil's 12,600MW Itaipu installation. A total of 32 main power generators are planned to operate off the dam, of which 12 sets on the right bank and 14 sets on the left were installed in 2006 and 2008, respectively. They were operational in October 2008 and generated a total of 18,300MW. Another six generators are being installed underground and are expected to become fully operational by the end of 2011. These six were added to the project in 2002. The first three became operational in June 2011. The third generator unit (Unit 30) completed a 72 hour test run in July 2011. The first underground unit (Unit 32) began operations in May 2011 and the second (Unit 31) commenced commercial operations in June 2011. Once the additional generators are all installed, the plant will produce 22,500MW of electricity. Three Gorges project The Three Gorges Dam project involves harnessing the Yangtze River, Asia's longest stretch of water, to generate prodigious amounts of electricity.
    [Show full text]
  • Three Gorges Dam in Hubei, China: a Cost and Benefit Analysis
    Economic Analysis of Public Policy Professor Yoshitsugu Kanemoto Graduate School of Public Policy, University of Tokyo Final Report Three Gorges Dam in Hubei, China: A Cost and Benefit Analysis Felipe Francisco De Souza Graduate School of Engineering, University of Tokyo Baozhi Gu, Kenji Kurotobi Graduate School of Public Policy, University of Tokyo Yuri Kim Graduate School of Frontier Sciences, University of Tokyo August 2013 Executive Summary Situated on a canyon known as the Three Gorges in Hubei, China, Yangtze River’s Three Gorges Dam is the world’s largest power station in terms of installed capacity (22,500 MW). The project was initiated by the Chinese government in 1994, with the support of different international cooperation agencies, for three main reasons. First of all, it would generate hydroelectricity to meet China’s rapidly increasing demand. Second, the Three Gorges Dam would protect millions of people living along the river from potential floods. And finally, it would transform a 600- kilometre stretch of the fast-flowing river into a smooth navigable waterway for vessels and provide business opportunities to western landlocked provinces. The Chinese government regards this project as a historic engineering, social and economic success, with the design of sophisticated large turbines, and a move toward limiting greenhouse gas emissions. However, the dam has been a controversial topic, the reason why a cost and benefit analysis was developed to understand all possible variables related to this gigantic project and its complicated development process. For the evaluation of major benefit components, special care was taken to understand flood control (and dam’s capacity to control 100 years events); electricity generation (and the reduction of CO2 emissions); and the enhanced shipping capacity (allowing the transit of large quantities of cargos).
    [Show full text]
  • Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts
    Geographical Overview of the Three Gorges Dam and Reservoir, China—Geologic Hazards and Environmental Impacts Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey Geographical Overview of the Three Gorges Dam and Reservoir, China— Geologic Hazards and Environmental Impacts By Lynn M. Highland Open-File Report 2008–1241 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Highland, L.M., 2008, Geographical overview of the Three Gorges dam and reservoir, China—Geologic hazards and environmental impacts: U.S. Geological Survey Open-File Report 2008–1241, 79 p. http://pubs.usgs.gov/of/2008/1241/ iii Contents Slide 1...............................................................................................................................................................1
    [Show full text]
  • Stability Assessment of the Three-Gorges Dam Foundation, China, Using Physical and Numerical Modeling—Part I
    ARTICLE IN PRESS International Journal of Rock Mechanics & Mining Sciences 40 (2003) 609–631 Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling—Part I: physical model tests Jian Liua,b,*, Xia-Ting Fenga, Xiu-Li Dingb, Jie Zhangb, Deng-Ming Yueb a Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Xiaohongshan, Wuhan, Hubei 430071, China b Yangtze River Scientific Research Institute, Wuhan 430019, China Accepted 31 March 2003 Abstract Foundation stability is one of the most important factors influencing the safety of a concrete dam and has been one of the key technical problems in the design of the Three-Gorges Project. The major difficulties lie in two facts. The first one is that the dam foundation consists of rock blocks, with joints and so-called ‘rock bridges’ and the gently dipping joints play a critical role in the foundation stability against sliding. The second one is that, even in the regions where the gently dipping fractures are most developed, there are no through-going sliding paths in the rock mass due to the existence of the rock bridges; so the dam could slide only if some of the rock bridges fail, so as to create at least one through-going sliding path. To date, due to unavoidable shortcomings in physical and numerical modeling techniques, there is not a single satisfactory method to solve the problem completely. For this reason, the integration of multiple methods was adopted in this study and proved to be an effective and reliable approach. This Part I paper describes work based on the results of geological investigations and mechanical tests, relating to the geological and geomechanical models of the Three-Gorges Dam, and then a systematic study procedure was developed to carry out the stability assessment project.
    [Show full text]
  • Is the Three-Gorges Dam Sustainable? LO: to Investigate How Human Activity Is Affecting the Longest River in Asia
    Is the Three-Gorges dam sustainable? LO: To investigate how human activity is affecting the longest river in Asia The Yangtze is the longest river in Asia, and the third- longest in the world. It flows for 6,418 kilometres (3,988 mi) from the glaciers on the Tibetan Plateau before emptying into the East China Sea at Shanghai Starter: What connects these images? The beginning of a river is called the source. In this case the Yangtze forms due to being fed by glaciers (huge masses rivers of ice) high up in the mountains of Tibet. October 1, 1949 – People’s Republic of China established with Mao Zedong as its first President. 1950-1955: Mao favors pro-natalistic population policy. Combined with falling death rates, it causes a large increase in population. 1958 - Mao Zedong launches the five plan dubbed "The Great Leap Forward" which collectivizes farming and new labour intensive industries are started. The plan is an economic disaster and is abandoned after only two years. 1959-1961: "Great Leap Forward" triggers largest famine in human history with an estimated 25-35 million deaths. 1970's - first attempts at state family planning programmes. These had some success and average family size fell to three children By the late 1970's, the government had adopted the slogan 'later, longer, fewer' meaning later marriages, longer gaps between children and fewer Aschildren. the river travels throughout1979-1980: Introduction of China's China strict "One-Child" it family planning program at in several provinces and in 1980 it was adopted at national level.
    [Show full text]
  • 47030-002: Lishui River, Jinshan River
    Resettlement Plan May 2015 People’s Republic of China: Jiangxi Pingxiang Integrated Rural-Urban Infrastructure Development Prepared by Shangli Project management office of the Jiangxi Pingxiang Integrated Urban and Rural Infrastructure Improvement Project for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 15 May 2015) Currency unit – yuan (CNY) CNY1.00 = $0.1613 $1.00 = CNY6.2012 ABBREVIATIONS AAOV – average annual output value ADB – Asian Development Bank ADG – Anyuan District Government AHs – affected households APs – affected persons DMS – detailed measurement survey DRC – Development and Reform Committee FGD – female group discussion FSR – feasibility study report HD – house demolition HH – household IA – implementation agency JMG – Jiangxi Municipal Government LA – land acquisition LLFs – land-loss farmers LCG – Luxi County Government M&E – monitoring and evaluation MLS – minimum living security O&M – operation and maintenance PMO – Project Management Office PMG – Pingxiang Municipal Government PMTB – Pingxiang Municipal Transportation Bureau RP – resettlement plan SCG – Shangli County Government WWTP – wastewater treatment plant NOTE In this report, "$" refers to US dollars. This resettlement plan is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.
    [Show full text]
  • Damright! WWF’S Dams Initiative
    DamRight! WWF’s Dams Initiative An Investor’s Guide to Dams DamRight! WWF’s Dams Initiative An Investor’s Guide to Dams Contents: Foreword by WWF Executive summary An investor’s checklist 1 Introduction 1.1 The benefits and costs of dams 1.2 The World Commission on Dams 1.3 Trends in dams finance 1.4 Aim of the guide 2 When is it appropriate to invest in dams? 2.1 Needs assessments 2.2 Alternative ways of providing services - assessing options Contents2.3 Ongoing review 3 Financial pitfalls to avoid when investing in dams 3.1 Exaggerated projections of benefits 3.2 Time and cost overruns 34 - 35 3.3 Inaccurate assessment of displaced peoples and inundated lands 32 - 33 3.4 Geological instability and dam failure 30 - 31 3.5 Displaced business spin-off 3.6 Sovereign risk and corruption 28 - 29 3.7 Maintenance and decommissioning costs 26 - 27 3.8 Cost recovery and dam beneficiaries 3.9 Inadequate insurance cover 24 - 25 4 Impact mitigation and avoidance 22 - 23 5 More information 6 References 20 - 21 7 Glossary 18 - 19 Annexes 16 - 17 Annex-1: Case study: Bakun dam, Malaysia 14 - 15 Annex-2: Mitigating environmental impacts 12 - 13 Cover image: 10 - 11 Itaipu dam – The biggest 8 - 9 dam in the world, located on the Paraná River 6 - 7 between Brazil and 4 - 5 Paraguay. 2 - 3 M GUNTHER, WWF-CANON DamRight! WWF’s Dams Initiative Foreword Dams are among the most destructive developments that impact on rivers and ecosystems, threatening both wildlife and people.
    [Show full text]
  • Journal of the Georgian Geophysical Society
    ISSN 1512-1127 saqarTvelos geofizikuri sazogadoebis Jurnali seria a. dedamiwis fizika JOURNAL OF THE GEORGIAN GEOPHYSICAL SOCIETY Issue A. Physics of Solid Earth tomi 15a 2011-2012 vol. 15A 2011-2012 ISSN 1512-1127 saqarTvelos geofizikuri sazogadoebis Jurnali seria a. dedamiwis fizika JOURNAL OF THE GEORGIAN GEOPHYSICAL SOCIETY Issue A. Physics of Solid Earth tomi 15a 2011-2012 vol. 15A 2011-2012 saqarTvelos geofizikuri sazogadoebis Jurnali seria a. dedamiwis fizika saredaqcio kolegia k. z. qarTveliSvili (mT. redaqtori), v. abaSiZe, b. ba l av aZ e, a. gvelesiani (mT. redaqtoris moadgile), g. gugunava, k. eftaqsiasi (saberZneTi), T. WeliZe, v. WiWinaZe, g. jaSi, i. gegeni (safrangeTi), i. CSau (germania), T. maWaraSvili, v. starostenko (ukraina), j. qiria, l. daraxveliZe (mdivani) misamarTi:!! saqarTvelo, 0193, Tbilisi, aleqsiZis q. 1, m. nodias geofizikis instituti tel.: 33-28-67; 94-35-91; Fax; (99532 332867); e-mail: [email protected] Jurnalis Sinaarsi: Jurnali (a) moicavs myari dedamiwis fizikis yvela mimarTulebas. gamoqveynebul iqneba: kvleviTi werilebi, mimoxilvebi, mokle informaciebi, diskusiebi, wignebis mimoxilvebi, gancxadebebi. gamoqveynebis ganrigi da xelmowera seria (a) gamoicema weliwadSi erTxel. xelmoweris fasia (ucxoeli xelmomwerisaTvis) 50 dolari, saqarTveloSi _ 10 lari, xelmoweris moTxovna unda gaigzavnos redaqciis misamarTiT. ЖУРНАЛ ГРУЗИНСКОГО ГЕОФИЗИЧЕСКОГО ОБЩЕСТВА серия A. Физика Твердой Земли Редакционная коллегия; К. З. Картвелишвили (гл. редактор), В.Г. Абашидзе, Б . К . Балавадзе , А.И. Гвелесиани (зам. гл. редактора), Г.Е. Гугунава, К. Эфтаксиас (Греция), Т.Л. Челидзе, В.К. Чичинадзе, Г.Г. Джаши, И. Геген (Франция), И. Чшау (Германия), Т. Мачарашвили, В. Старостенко (Украина), Дж. Кириа, Л. Дарахвелидзе Адрес; Грузия, 0171, Тбилиси, ул. Алексидзе, 1. Институт геофизики им. М. З.
    [Show full text]
  • On China's Rivers
    102 A The “Last Report” On China’s Rivers Executive Summary By Bo Li, Songqiao Yao, Yin Yu and Qiaoyu Guo English Translation released in March 2014 This report is issued jointly by the following initiating and supporting organizations: Initiating organizations: Friends of Nature Institute of Public & Environmental Affairs Green Watershed SHAN SHUI Chengdu Urban Rivers Association Supported by: Nature University Xiamen Green Cross Association Huaihe River Eco-Environmental Science Research Center Green Zhejiang Saunders’ Gull Conservation Society of Panjin City Green Panjin Eco Canton EnviroFriends Institute of Environmental Science and Technology Dalian Environmental Protection Volunteers Association Green Stone Environmental Action Network Greenovation Hub Wild China Film English translation support from: China Environment Forum, Woodrow Wilson Center 1 1 First Bend of the Yangtze River FOREWORD In January 2013, the third year of China’s Twelfth • Reduce coal consumption as a percentage of prima- Five-Year Plan, the State Council released its 12th ry energy to below 65% by 2017; and, Five-Year Plan for Energy Development1, which • Construct 160 GW of hydropower capacity and to included targets that aim to shift China’s energy mix raise nationwide hydropower capacity to 290 GW. to one that pollutes less yet still fuels the country’s growing energy needs. Specifically, by 2015 the Plan If the Plan’s hydropower targets are to be met, by proposes to: 2015, nationwide conventional hydropower installed capacity will reach 48% of the technically exploitable • Increase the proportion of non-fossil fuels in overall hydropower potential, and 72% of the economically primary energy use to 11.4 percent; recoverable potential.
    [Show full text]
  • Inland Fisheries Resource Enhancement and Conservation in Asia Xi RAP PUBLICATION 2010/22
    RAP PUBLICATION 2010/22 Inland fisheries resource enhancement and conservation in Asia xi RAP PUBLICATION 2010/22 INLAND FISHERIES RESOURCE ENHANCEMENT AND CONSERVATION IN ASIA Edited by Miao Weimin Sena De Silva Brian Davy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, 2010 i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-106751-2 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: [email protected] © FAO 2010 For copies please write to: Aquaculture Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion, 39 Phra Athit Road Bangkok 10200 THAILAND Tel: (+66) 2 697 4119 Fax: (+66) 2 697 4445 E-mail: [email protected] For bibliographic purposes, please reference this publication as: Miao W., Silva S.D., Davy B.
    [Show full text]
  • Realizing the Urban Potential in Georgia: National Urban Assessment
    REALIZING THE URBAN POTENTIAL IN GEORGIA National Urban Assessment ASIAN DEVELOPMENT BANK REALIZING THE URBAN POTENTIAL IN GEORGIA NATIONAL URBAN ASSESSMENT ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2016 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 632 4444; Fax +63 2 636 2444 www.adb.org Some rights reserved. Published in 2016. Printed in the Philippines. ISBN 978-92-9257-352-2 (Print), 978-92-9257-353-9 (e-ISBN) Publication Stock No. RPT168254 Cataloging-In-Publication Data Asian Development Bank. Realizing the urban potential in Georgia—National urban assessment. Mandaluyong City, Philippines: Asian Development Bank, 2016. 1. Urban development.2. Georgia.3. National urban assessment, strategy, and road maps. I. Asian Development Bank. The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. This publication was finalized in November 2015 and statistical data used was from the National Statistics Office of Georgia as available at the time on http://www.geostat.ge The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area.
    [Show full text]