Clean from Start to Finish

Total Page:16

File Type:pdf, Size:1020Kb

Clean from Start to Finish CLEAN COMPOUNDING | PROCESSING Whether for medical, pharma or for engineering applications, demand for high cleanliness compound production is on the rise. Peter Mapleston learns more PHOTO: POLYCOMPOUND PHOTO: Clean from start to finish Mention cleanrooms to most plastics engineers Apex facility at St Albans, in Vermont in the US, Main image: and it is likely they will think of pharmaceutical where the company produces its Medalist medical Swiss toll production, manufacturing of medical and elec- thermoplastic elastomers (the company also has a compounder tronic devices, possibly plastics injection moulding, line dedicated to Medalist compounds in Singa- Polycompound but almost certainly not compounding. It is simply pore). “The adherence to CGMP protocols during reports not a term that is used much in the compounding line clearances ensures each recipe is free from growing business – but perhaps it should be. The reality is foreign materials,” he says (CGMP refers to the demand for its that if a processor working in a field such as Current Good Manufacturing Practice regulations clean com- medical does not start with a clean compound it is enforced by the FDA in the US and which provide for pounding capa- very unlikely they will be able to produce a clean systems that assure proper design, monitoring, and bilities from syringe or similar device. To coin a phrase from the control of manufacturing processes and facilities). customers in computer industry: garbage in, garbage out. “The St Albans facility has a strong commitment the high As it happens, there is plenty of expertise to the needs of our customers and incorporates performance around covering clean compounding. Remember those requirements into their highly controlled power cable that many producers of twin-screw extrusion lines processes. Everything from raw materials through sector for plastics compound production also offer packaging is considered when we produce equipment that is not all that different in concept products for our customers in the regulated for pharmaceutical and food processing. However, applications, including machine lubricants,” a lot of what those equipment builders do in this Ciemniewski says. area is covered by confidentiality agreements, so The Medalist production lines at St Albans and much of what follows in this article is based on in Singapore both carry ISO 13485 certification. input from a number of compound manufacturing This international standard for quality management companies considered to be leaders in the field. in medical manufacturing specifies systems for Eric Ciemniewski is Plant Manager of the Teknor consistent compliance with regulatory and custom- www.compoundingworld.com June 2019 | COMPOUNDING WORLD 61 PROCESSING | CLEAN COMPOUNDING er requirements and includes provisions for risk management, sterile manufacturing, and traceabil- ity. The comprehensive implementation program required for ISO 13485 certification requires focusing of the entire compounding operation on processes and procedures that maximise safety and reliability of the compounds supplied to medical device manufacturers. Clean or white? Lewiston, Maine, US-based Compounding Solutions implemented the use of a white room for all of its medical R&D and production materials back in 2012 (a white room can be considered very much like a cleanroom but without the certifica- tion). “Due to the extremely fine particle sizes of most colorants, the ability to obtain and then maintain the certification is extraordinarily chal- lenging,” the company says. “We conduct our own air quality reviews and have found that we meet Class 100,000 standards.” ICMA delivers In a white paper, the company says that while gloved handling of finished products is a critical element in their customers’ final assembly opera- turnkey pharma tions to help prevent excessive particle counts, many issues may be occurring before a part or solutions product has been received to the plant. In April this year, Italian twin-screw compounding “Depending on how your vendor has built and extruder specialist ICMA San Giorgio delivered operates their facility it may be adding risk to your a complete system to a major European pharma raw materials. Ceiling drop-downs for air, electrical group for direct compounding and extrusion of wires or feed tubes can collect dust and other several types of TPE foils. The system includes contaminates that can easily fall into open hoppers. gravimetric dosing units, a high-efficiency Open water tanks capture the same environmental co-rotating twin screw extruder (ICMA MCM 60) Below: hazards as water baths do,” it says. “Companies and downstream equipment (three-roll calender Applications either have the ability to help with cleanliness and fully automated winding unit). for the Teknor issues or they do not. Most compounders do not ICMA Managing Director Giorgio Colombo Apex ISO run products under anything close to white room says the turn-key project involved complete 13485 conditions.” engineering with several customised features Medalist TPEs The Compounding Solutions white room closely tied to the customer’s requirements, include syringe operates under conditions similar to a clean room including solutions for assuring maximum stoppers using laminar air flow conditions to ensure that no cleanliness of the entire process line dictated by critical pharma applications. The line incorpo- rates several digital solutions and sensor devices applied to key parts such as the calender and thickness control to achieve maximum accuracy during extrusion and the highest standard of safety for the operators. ICMA has also just supplied a multinational pharma group with a turn-key line based on a 25mm compounding unit designed to produce several TPE recipes, Colombo says. “In this case ICMA was able to accommodate a very demand- ing customer with several customised features in line design and services.” PHOTO: TEKNOR APEX ❯ www.icmasg.it 62 COMPOUNDING WORLD | June 2019 www.compoundingworld.com PROCESSING | CLEAN COMPOUNDING PHOTO: PLASTICS COLOR CORPORATION COLOR PLASTICS PHOTO: Above: PCC’s contamination enters the feeders of the com- provided the company with additional warehousing, latest produc- pounding line. The walls and floors are all sealed post blending, packaging and shipping capacity, as tion line in so it is possible to carry out a complete wash from well as housing a new compounding line. Chicago was the ceiling to the floor. The company also took the designed and precaution during construction of the facility to Maintaining integrity installed by bring all electrical and water lines in from the Integrity at all stages of the product development Entek ground up rather than using drop-downs, which process “is absolutely paramount for medical device can collect dust and other contamination. In companies,” says David Witt, a researcher with addition, feeders for various additives are all Chicago, US-based Plastics Color Corporation covered and sealed under nitrogen. (PCC). “Medical device manufacturers have to be The company says special attention is paid in the certain that for each product produced, every plant to water baths, which are areas where component and every process involved adhere to pyrogens collect easily. Thorough cleaning is compliance standards.” carried out after each production run and changing PCC opened a 700m2 “Plant Within a Plant” just the water in the cooling baths and scrubbing the over ten years ago for production of additive and tanks is standard practice. colour masterbatch for medical devices. It says the Compounding Solutions has also recently facility was designed with input from medical announced plans to add a cleanroom, certified to experts who cited reducing contamination risk as a Class 100,000, for medical compounding. It is paramount concern. “We talked to customers in the scheduled to go into operation in January next market and asked what we and they needed to look year. “Clean room compounding is very rare and like in five years,” says Joe Byrne, President of PCC. we continue to look to raise the bar and push “The industry is moving toward quick-turn, boundaries of medical plastic compounding,” said just-in-time processing, as well as toward more a company spokesperson. closed-loop systems for clean compounding,” says The cleanroom investment is part of a 5,500m2 Byrne. “Today, we’re making that all work in one expansion of the Lewiston facility that has already facility. It has been important for customers to see how we handle materials and how the cross-con- tamination risk has been almost eliminated by using such equipment as a sterilised water bath utilising UV filtration and a closed-loop water system.” Adding capacity Foster Corporation, headquartered in Putnam, CT, USA, is another leading supplier of custom compounds for medical applications. It was PHOTO: COMPOUNDING SOLUTIONS COMPOUNDING PHOTO: featured in an earlier Compounding World article on cleanroom compounding back in 2016 but has since added further clean production capacity. “Foster’s has built, and put into service, a new pharmaceutical facility across from our corporate Above: Clean compounding at Compounding Solutions facility. This is a state-of-the-art building with two 64 COMPOUNDING WORLD | June 2019 www.compoundingworld.com PROCESSING | CLEAN COMPOUNDING suppliers regularly); enhanced and tighter material specifications; biocompatibility testing including USP Class VI and/or ISO 10993; no change agreements where suppliers must inform us (so we can inform our
Recommended publications
  • Sample Pages Plastics Technology
    Sample Pages Plastics Technology Christian Bonten ISBN (Book): 978-1-56990-767-2 ISBN (E-Book): 978-1-56990-768-9 For further information and order see www.hanserpublications.com (in the Americas) www.hanser-fachbuch.de (outside the Americas) © Carl Hanser Verlag, München Preface Immediately after I started working at the University of Stuttgart in late summer 2010, I revised the course “Fundamentals of Plastics Technology” with the help of my scientific staff. Since then, this important course has been held unchanged in Stuttgart for a long time. During the revision we not only updated figures and contents, but also gave the course a new structure, which I – inspired by didactic seminars of the German University Association – consider more contemporary. Numerous film sequences used in the lectures enable the students to understand the contents more quickly and deeply. I am convinced that the students in my course become well equipped with a comprehensive, fundamental knowledge of plastics and plastics technology for their upcoming professional life. If students want to deepen their knowledge of the subject, they can do so in the three main areas of “Materials Engineering”, “Processing Technology”, and “Product Engi- neering” in other courses later on. This introductory and fundamental lecture series in Stuttgart is an elective course with four lessons per week for master students of process engineering, mechanical engineering (e. g. production engineering, automotive engineering), materials sci- ence, as well as of technology management. The course is actually aimed at techni- cally educated students, but in the meantime non-technical students (economics, environmental issues) choose the course as well.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,109,118 B2 Joyce Et Al
    US009 109118B2 (12) United States Patent (10) Patent No.: US 9,109,118 B2 Joyce et al. (45) Date of Patent: *Aug. 18, 2015 (54) CELLULOSIC INCLUSION 5,075.359 A * 12/1991 Castagna et al. ................ 524, 13 THERMOPLASTC COMPOSITION AND 5,346,773 A * 9/1994 Simoens ........ ... 428,476.9 5,403,667 A * 4/1995 Simoens ..... ... 428/479.6 MOLDING THEREOF 5,882,745 A * 3/1999 Miet al. .......................... 428/15 5.948,524 A 9/1999 Seethamraju et al. (71) Applicants: Innovative Plastics and Molding, 6,270,883 B1* 8/2001 Sears et al. ................. 428,292.1 Lambertville, MI (US); RheTech, Inc., 6,294,602 B1* 9/2001 Shimo et al. ... ... 524,394 6,376,584 B1 * 4/2002 Galbo et al. ....... ... 524/102 Whitmore Lake, MI (US) 6,682,789 B2 * 1/2004 Godavarti et al. .............. 428/34 6,835,764 B2 * 12/2004 Leckey et al. ................... 524/15 (72) Inventors: Robert C. Joyce, Lambertville, MI 7,862,746 B2 * 1/2011 Kaspers et al. ... ... 252/.397 (US); Andrew Hopkins, Sylvania, OH 8,122,996 B2 * 2/2012 Kajihara et al. ... ... 181,169 (US); Harutun George Karian, 8,546,470 B2 * 10/2013 Joyce et al. ..................... 524/14 Brighton, MI (US) 2003/0022962 A1* 1/2003 Cook et al. ..... ... 523, 164 2004/0122133 A1* 6/2004 Mohanty et al. ................ 524/35 2004/O126515 A1* 7, 2004 Yarmoska ...... ... 428/34.1 (73) Assignee: RHETECH, INC., Labertville, MI (US) 2005/0154094 A1* 7/2005 Maeda et al. ................... 524/35 2006/0084764 A1* 4/2006 Hanna et al. ... 525/242 (*) Notice: Subject to any disclaimer, the term of this 2006/0091578 A1* 5, 2006 Bravo et al.
    [Show full text]
  • Thermoplastic Carbon Nanotube Composites Prevent High Voltage “Burn In”
    Thermoplastic Carbon Nanotube Composites Prevent High Voltage “Burn In” RTP Company RTP Company Corporate Headquarters • 580 East Front Street • Winona, Minnesota 55987 USA website: www.rtpcompany.com • email: [email protected] • Wiman Corporation • +1 320-259-2554 TELEPHONE: U.S.A. SOUTH AMERICA MEXICO EUROPE SINGAPORE CHINA +1 507-454-6900 +55 11 4193-8772 +52 81 8134-0403 +33 380-253-000 +65 6863-6580 +86 512-6283-8383 Thermoplastic Carbon Nanotube Composites Prevent High Voltage “Burn In” Ned Bryant, Sr. Product Development Engineer RTP Company, 580 E. Front St., Winona, Minnesota, USA Telephone: +1 (507) 454-6900, Internet: www.rtpcompany.com Abstract – During a lightning strike event, lightning strike isolators are critical parts of aircraft fuel- line safety. Current technology is based on carbon fiber and carbon black filled epoxies. Recent development efforts have achieved burn-in resistant, injection moldable thermoplastics using carbon nanotube additives, capable of maintaining ESD characteristics after multiple ~10 kV DC strikes. I.) INTRODUCTION several exposures the part is no longer static dissipative, but on the contrary, rather conductive. The Boeing Company estimates that on average, This resistance to burn-in is a critical element that each airplane in service is struck by lightning twice cannot be compromised if safety of the aircraft is to per year. The energy from these strikes must be be maintained. It is also important to note that these controlled very carefully in order to avoid system isolators are deep in the structure of the aircraft wing damage. This is especially important in aircraft fuel and are therefore non-serviceable.
    [Show full text]
  • Strategicanalysisin C. Now Available Investment Opportunities In
    S T R A T E G I C A N A L Y S I S I N C. NOW AVAILABLE INVESTMENT OPPORTUNITIES IN THERMOPLASTIC COMPOUNDING IN CHINA FIRST COMPREHENSIVE ANALYSIS OF 40 POTENTIAL ACQUISITIONS, JOINT VENTURES AND ALLIANCE PARTNERS VISIT SAI’S WEBSITE FOR MORE INFORMATION www.strategicanalysis.com AUSTRALIA • BELGIUM • CHINA • INDIA • JAPAN • MEXICO • SINGAPORE • UNITED STATES BACKGROUND China has become the factory of the world and the economy is growing at substantial rates. The development of the Chinese market in the last several years has exploded and many industry segments are growing at exponential rates. As a result, companies: 1. Are rushing to position themselves to serve this rapidly growing domestic market 2. Taking advantage of the low cost of production to serve not only China and Asia, but other parts of the world 3. Positioning themselves to defend against strengthening local competition in China that if not checked will eventually spread to other parts of the world Because of China's rapid economic development, the plastic compounding industry has grown at strong double-digit rates for nearly five years and will continue to grow or exceed these rates in the next five years. Leading multinational corporations and local independents are rushing to meet this demand by adding compounding and concentrating operations to serve the specialized needs of such end-use markets as automotive, building and construction, electrical and electronics, and appliances. As Western-based customers increase their production in China to serve the local market and to export to Europe, the United States and other Asian markets, demand for higher performance compounds will also accelerate.
    [Show full text]
  • Plastic Resins in the United States
    Plastic Resins in the United States Prepared for: American Chemistry Council Plastics Division America’s Plastics MakersTM* By: American Chemistry Council Economics & Statistics Department July 2013 TABLE OF CONTENTS Plastics By the Numbers................................................................................................................................ 1 Section 1 – About Plastic Resins ................................................................................................................... 2 Resin Chemistry ............................................................................................................................... 2 A History of Plastics Innovation ....................................................................................................... 4 Section 2 – US Resin Industry Snapshot ........................................................................................................ 6 Industry Shipments .......................................................................................................................... 7 Jobs and Payroll ............................................................................................................................... 8 Investment ....................................................................................................................................... 9 Trade .............................................................................................................................................. 10 Transportation
    [Show full text]
  • The Interfacial Role of Compatabilizers to Improve Mechanical Properties Of
    0BPhysicochem. Probl. Miner. Process. 46(2011) 295-305 journal homepage Hwww.minproc.pwr.wroc.pl/journal/ Ayman A. EL-MIDANY *, Suzan S. IBRAHIM ** INTERFACIAL ROLE OF COMPATABILIZERS TO IMPROVE MECHANICAL PROPERTIES OF SILICA– POLYPROPYLENE COMPOSITES Received May 10, 2010; reviewed; accepted July 30, 2010 Polymers have tremendous applications from household to high technology applications. The polymers are easy to produce, light, and flexible. However, mechanical properties of polymers, in some industries, is a point of its weakness. Therefore, a mineral, as a bulk filler, was used to overcome this limitation and to reduce the cost of polymer composites and their manfacturing. In this study, the silica flour was introduced into the polypropylene (PP) matrix to enhance its mechanical properties. In addition, the styrene-ethylene/butylene-styrene (SEBS) triblock copolymer and its grafted maleic anhydride (SEBS-g-MA) were used as silica/ PP compatibilizers. The results showed an improvement in mechanical properties after the addition of silica to the PP matrix. However, silica addition led to drop in strain measures. On the other hand, the addition of the compatibilizer enhances the interfacial bonding and smoothen the transfer of the stresses between filler particles and the polymeric matrix. keywords: polymers, silica, polypropylene, mechanical properties, fillers 1. INTRODUCTION Minerals represent the most important filling materials. Their advantages are twofold; firstly, as functional filler because the mineral addition is incorporated to achieve a specific performance attribute to the end-product. While in the second case the mineral represents merely a bulk filler or an extender for the costly polymer base matrix (Trivedi et al., 1994; Lee, 2000; DeArmitt, 2000; Nielsen, 1974; Lindsey et al., 1974; Haddout, 1992; Chuang et al., 1985; Leidner et al., 1974).
    [Show full text]
  • Plastic Compounding Market Research Report- Forecast to 2028
    Report Information More information from: https://www.marketresearchfuture.com/reports/4697 Plastic Compounding Market Research Report- Forecast to 2028 Report / Search Code: MRFR/CnM/3276-CR Publish Date: August, 2018 Request Sample Price 1-user PDF : $ 4450.0 Enterprise PDF : $ 6250.0 Description: Market Overview Plastic Compounding Market is projected to be worth USD 985,743.6 million by 2028, registering a CAGR of 6.75% during the forecast period (2021 - 2028). The international manufacturing sector persists in placing an enormous requirement for polymer mixtures. As mentioned above, a fast expansion in the plastic compounding technology is witnessed as a subsequent upshot of the occurrence. Polymer blends are expected to remain a desirable industrial product as they are finding new application chances. The use of plastic compounding permits the use of polymer variants such as Polyethylene (PE), PVC (Poly Vinyl Chloride), and Polypropylene (PP) in the building of an extensive range of products. COVID-19 Analysis The conditions of buyers and sellers are changing significantly in the course of the COVID-19 crisis, which is estimated to have significant rippling effects on a macro level, especially for markets for packaging and medical applications that have coped well through the pandemic. In contrast, transactions into automotive and some durable articles such as appliances have shown strained development. Trends emerged in the pandemic, such as automakers who pivoted to providing and manufacturing ventilators in the pandemic's initial days. It is also noted that companies like LyondellBasell in the third quarter of this year saw a recovery in automotive manufacture, as OEMs resumed assembly lines and produced their vehicle backlogs.
    [Show full text]
  • Effect of Triblock-Copolymeric Compatibilizing Addidtives on Improving the Mechanical Properties of Silica Flour -Filled Polypropylene Composites
    Physicochemical Problems of Mineral Processing, 42 (2008), 165-176 Fizykochemiczne Problemy Mineralurgii, 42 (2008), 165-176 Suzan S. Ibrahim*, Ayman A. El-Midany* EFFECT OF TRIBLOCK-COPOLYMERIC COMPATIBILIZING ADDIDTIVES ON IMPROVING THE MECHANICAL PROPERTIES OF SILICA FLOUR -FILLED POLYPROPYLENE COMPOSITES Received May 15, 2008; reviewed; accepted July 31, 2008 Minerals are introduced during the compounding processes into the polymeric host matrix in most thermoplastics industries to accomplish a variety of modified physical characteristics to the new-born composites. The introduction of well-dispersed silica flour particulates; tailored with respect to grade and fineness; into the virgin polypropylene matrix has shown an extreme improvement in the per- formance characteristics of the end-product. This could be attributed to the relatively low thermal ex- pansion coefficient of silica. In this study, purified silica flour was blended with polypropylene to produce the finished masterbatch formulation for plastics industry. The flour was added during com- pounding stage with different loading levels from 1.5% to 15% by volume. Results showed substan- tial improving in many physical properties, i.e., increase in Young’s modulus, impact strength, and yield stress measures. Moreover, silica addition resulted drop in all strain measures of the end prod- ucts with various loading levels. On the other-hand, the addition of styrene-ethylene/butylene-styrene block SEBS and its grafted maleic anhydride surface compatibilizers was extra added during the blend digestion process to enhance silica/ PP wettability. After the addition of SEBS compatible re- agent, results did not show improving in both Young’s modulus and yield strength measures. Yet, remarkable improvement in impact strength and strain characters was noticed.
    [Show full text]
  • Plastic Compounding, Masterbatches, Pet and Other Plastic Processing Industries
    PLASTIC COMPOUNDING, MASTERBATCHES, PET AND OTHER PLASTIC PROCESSING INDUSTRIES •Polyethylene •Extrusion •Injection Moulding •Blow Moulding •Polyvinyl Chloride •Polyesterterephthalate (Pet) •Rotational Moulding •Post Extrusion Process •Vacuum Metallizing •IDentification of Plastic Materials •Recycling an Industrial Approach •Additives for Polymers •Get Virgin Quality From Reprocessed •speciality Additives and Masterbatches •PVC Compounding •Compounding of PVC Pastes •Expanded Polyethylene •Expanded Polystyrene •Speciality Plastic Compounds and Masterbatches •PVC Compound •Polymer Alloys, Blends & Composites •XLPE Cable Compound, Jelly Filled Telecommunication Cable Compound and Sheating Compound •Thermoplastic Rubber (Elastomer) Compound •Masterbatches •Production and Filling Process of a PET Bottle •PET Bottle Recycling •PET Preform and Bottle Blowing •PET Bottles from Pre Form PET •Plant Economics of PET Bottles from Pre Form PET •PET Pre Form PET Resin •Project Profile for Pet Strech Blow Moulding Machine •Automobile Injection Moulded Plastic Components •Colour Master Batch for Various Plastics •Compact Disk •Co-Extruded Multilayer Film and Laminated Multilayer Film •Egg Trays From Plastics •Ethylene Vinyl Acetate Sheet and Sole •Polypropylene Multifilament Spinning Yarn •Plastic Films and Sheets with Printing (Flexo and Roto) LDPE/HDPE/PP/HM/PVC •Plastic Granules From Fresh Resin •Plastic Injection Moulding Products •Plastic Mat •Pet Bottles from Pre-Form (Capsules) •Pet Pre Form Pet Resin •PVC Pipes & Fittings •PVC Extrusion Profiles
    [Show full text]
  • High Performance Compounding
    Smart Feeding & Application Example Conveying Solutions High Performance Compounding Introduction The production of plastic consists a continuous, uniform infeed with Electronics, Furniture, Health & allows formulations with reduced of many important process steps, very tight short-term accuracy and Hygiene, Leisure & Sport, Packag- wax content or no wax at all. This which are needed to generate a ho- repeatability. ing, Pipes, Textiles, etc. means that high performance mogeneous application specific compounding technology not only plastic compound from a number Typical Production Output Masterbatch benefits productivity and quality of different raw materials. Twin screw compounders are With high performance com- but also contributes to reduced equipped with different screw pounding technology, the time- raw material costs. Process diameters from 25 up to 150 mm consuming step of fine grinding The compounding process is a in various steps depending on the of pellets and premixing in batch Engineering Plastics continuous process. The main manufacturer of the compounder. quantities can be eliminated. Compounding and pelletizing of steps in the compounding process The typical line rates range from Pigments are fed directly into engineering plastics (i.e. filling, are: 50kg/h up to 6’000 kg/h. the melt by means of gravimetric reinforcing, alloying, colouring conveying feeders. Pigment concentrations and degassing of PA, PP, PET, ABS, End-Product Industries up to 70 percent are possible. PUR, PC or POM) are the specialty plasticizing/melting
    [Show full text]
  • High Performance Compounding
    Application Example High Performance Compounding Introduction Typical Production Masterbatch Engineering Plastics The production of plastic con- With high performance com- Compounding and pelletizing sists of many important process Output pounding technology, the time- of engineering plastics (i.e. steps, which are needed to gen- Twin screw compounders are consuming step of fine grind- filling, reinforcing, alloying, erate a homogeneous applica- equipped with different screw ing of pellets and premixing colouring and degassing of PA, tion specific plastic compound diameters from 25 up to 150 in batch quantities can be PP, PET, ABS, PUR, PC or POM) from a number of different raw mm in various steps depend- eliminated. Pigments are fed are the specialty of high perfor- materials. ing on the manufacturer of the directly into the melt by means mance compounders. compounder. The typical line of gravimetric feeders. Pig- rates range from 50kg/h up to Process ment concentrations up to 70 6’000 kg/h. The compounding process is a percent are possible. Compared continuous process. The main with the old premix feeding steps in the compounding pro- End-Products method, the new process allows cess are: Automotive, Building & Con- formulations with reduced wax content or no wax at all. This > conveying struction, Appliances & House- wares, Electronics, Furniture, means that high performance > plasticizing/melting Health & Hygiene, Leisure & compounding technology not > mixing Sport, Packaging, Pipes, Tex- only benefits productivity and quality but
    [Show full text]
  • Plastic Compounding Market Forecast & Competitive Share, 2017
    Plastic Compounding Market Forecast & Competitive Share, 2017 - 2024: Global Market Insights, Inc. Global Plastic Compounding Market size is projected to witness a significant growth between 2017 and 2024. Compounding of plastic is done to convert the base resin in a desired plastic form that is more usable, effective and uniform. Upsurge in the market is observed owing to its multiple and varied applications in end use industries such as automotive, electrical & electronics, and construction. Plastic components are preferred over metals in automobiles owing to their easy moldability, superior impact strength, scratch resistance, better aesthetics, light weight and recyclability. With the use of plastic components in the automobiles there is a weight saving of nearly 75% and 30% in cost savings of automobile components. Reasons to Buy This Report: 1. Plastic Compounding Market size & share forecast by product & application 2. Growth drivers, pitfalls & industry challenges 3. Key Plastic Compounding Market growth opportunities & emerging business models 4. Competitive benchmarking with market share analysis and company profiles 1 | P a g e Browse Full Plastic Compounding Market Report Summary@ https://www.gminsights.com/industry-analysis/plastic-compounding-market Based on product type, the market is segmented as polystyrene, polyamides, polycarbonate, olefins, thermoplastic polyolefins, polyethylene terephthalate, and PVC. On the basis of application, the market is divided into composites, insulation materials, floorings, storage tanks, vehicle exterior panels, and vehicle interior trims. Asia Pacific accounts for significant market share in terms of volume in the global plastic compounding market. Booming construction activities in India, China, and South Korea is contributing substantially in consumption of plastic compounds such as olefins.
    [Show full text]