Aminoglutethimide: a 'Side-Effect' Turned to Therapeutic Advantage

Total Page:16

File Type:pdf, Size:1020Kb

Aminoglutethimide: a 'Side-Effect' Turned to Therapeutic Advantage Postgrad Med J: first published as 10.1136/pgmj.46.537.409 on 1 July 1970. Downloaded from Postgraduate Medical Journal (July 1970) 46, 409-416. Aminoglutethimide: a 'side-effect' turned to therapeutic advantage S. W. M. HUGHES D. M. BURLEY B.Pharm., D.C.C., M.P.S., M.I.Biol. M.B., B.S., M.R.C.S., L.R.C.P. Medical Division, CIBA Laboratories, Horsham, Sussex Summary glutethimide was marketed as an anticonvulsant in Aminoglutethimide was introduced as an anti- the United States in May 1960. convulsant drug in the U.S.A. in 1960. Reports on the therapeutic use of aminogluteth- The occurrence of a number of side-effects, includ- imide appeared in both the North American medical ing several endocrine effects such as goitrogenesis, literature (Lambros, 1958; LaVeck, 1960; Pearce, sexual precocity and virilization, led to its with- 1960; Aguilar, Martin & McNaughton, 1961) and drawal. the European medical literature (Guareschi, Gian- Further investigation indicated that the drug in- nelli & Marinato, 1956; Sheehan, 1958; Fabisch, hibited adrenal biosynthesis, particularly of aldo- 1959; Defer, 1960; Verdeau-Pailles, 1961). All these sterone, cortisol and androgens, probably by interfer- papers reported varying degrees of efficacy in either ing with the conversion of cholesterol to delta-5- grand mal, petit mal or psychomotor epilepsy. pregnenolone. Nevertheless, in one study, of 2 years' duration, Aminoglutethimide has also been shown to modify using aminoglutethimide with other anticonvulsants, copyright. the extra-adrenal metabolism of cortisol. it was found to be impossible to discontinue any of The possible clinical applications of these 'side- the companion drugs (Aguilar et al., 1961) and in effects' are discussed. 1962 the American Medical Association's Council on Drugs (Journal ofthe American Medical Associa- Aminoglutethimide was first described in the tion, 1962), reviewing new drugs and developments pharmacological literature in 1956. It was clinically in therapeutics, described aminoglutethimide as a evaluated as an anti-convulsant and became com- 'moderately effective' anticonvulsant for oral treat- mercially available in the United States in 1960. ment of various types of convulsive seizure. The http://pmj.bmj.com/ Six years later it was withdrawn from the market at Council concluded that in view of its limited efficacy the request of the United States Food and Drugs and high frequency of untoward reactions, amino- Administration on account of side-effects. It is the glutethimide was only indicated as a supplement to purpose of this paper to describe the events leading other anticonvulsants in those patients not respond- to the withdrawal of aminoglutethimide and also ing to conventional therapeutic regimes. At that time to review the subsequent biochemical and clinical side-effects were reported to occur in almost half of investigations which have resulted in the previously the patients treated. These commonly included on September 25, 2021 by guest. Protected unwanted side-effects of this drug being utilized to morbilliform rashes, dizziness, drowsiness, be- clinical advantage. havioural changes, ataxia, headache, leukopenia, respiratory depression and, more rarely, exfoliative Anticonvulsant activity dermatitis and one case of agranulocytosis with In 1956 Gross et al. reported the structure, activity ulcerative stomatitis. and metabolism of a series of a,a disubstituted Thus, although not highly regarded as an anti- glutaric acid imides. A series of compounds based convulsant aminoglutethimide found a place as a on a-phenyl-a-ethyl glutarimide (glutethimide) which second-line drug, and in 1966 it was estimated that had known sedative-hypnotic and anticonvulsant it was being used by approximately 5000 patients activity, was examined in mice and p-(a-amino- annually. phenyl)-a-ethyl glutarimide (aminoglutethimide) was shown to have markedly greater anticonvulsant F.D.A. withdrawal activity, but considerably less sedative-hypnotic In 1963 Cash, a Detroit paediatrician, noted the effect, than the parent compound. Clinical evaluation occurrence of goitrous hypothyroidism and adrenal proceeded in Europe and North America and amino- insufficiency in an 8 year-old female patient who had Postgrad Med J: first published as 10.1136/pgmj.46.537.409 on 1 July 1970. Downloaded from 410 S. W. M. Hughes and D. M. Burley been admitted to the Sinai Hospital. The patient the exception of a slight reduction in radio-iodine exhibited a bronze skin typical of Addison's disease uptake. These studies, therefore, confirmed that but had no history of adrenal disorder. It was, how- aminoglutethimide interferes with thyroid meta- ever, noted that she was an epileptic and had re- bolism and that it has a goitrogenic action. ceived aminoglutethimide for the previous 5 months. When Rallison et al. (1964) first reported the Studies in this patient, and others receiving amino- effects of aminoglutethimide on thyroid metabolism, glutethimide, and experimental work in rats and they based their original suggestion of a block in the dogs demonstrated that the drug could produce organification of iodine on the evidence obtained histological changes in the adrenals suggesting a from three children who showed low protein-bound block of steroid biosynthesis (Camacho et al., 1966). iodine, and low butyl extractable iodine values, a In 1964 Rallison, Tyler & Kumagi described thyroid high thyroidal uptake of radio-iodine and a dis- enlargement and hypothyroidism in three epileptic charge of more than 50% of thyroidal radioactivity children receiving the drug. Withdrawal of the following the administration of thiocyanate. Extrac- aminoglutethimide in these children resulted in the tion and chromatography of plasma and urine failed disappearance of the goitre and restoration of nor- to reveal any abnormal iodinated compounds. Four mal thyroid function, thus confirming that the additional children, also receiving the drug, were goitres were drug-induced. These setbacks for amino- found to be clinically euthyroid and exhibited no glutethimide were followed in 1965 by the publica- abnormalities of protein-bound iodine or radio- tion ofa case ofcongenital female pseudohermaphro- iodine uptake. These workers have since investi- ditism which was considered to be due to anti- gated the nature of the antithyroidal effects ofamino- convulsant drugs, which included aminogluteth- glutethimide in rats and have consistently demon- imide, taken by the mother (Iffy et al., 1965). strated thyromegaly, diminished production of Finally during this same period the manufacturers thyroxine and di-iodotyrosine and an accumulation informed the Food and Drugs Administration (FDA) of thyroidal inorganic iodide (Rallison, Kumagi & that they had received reports of sexual precocity in Tyler, 1967). The block in the organificiation of children receiving the drug. iodine was found to be similar to the action of Thus in February 1966 aminoglutethimide was propylthiouracil and aminobenzene derivatives to copyright. recalled from the market (F.D.A. press release 16 which aminoglutethimide bears a structural resem- February 1966). The F.D.A. stated that it had re- blance. They concluded that the unpredictability of quested this action since the effectiveness of the drug antithyroidal activity among their seven patients in the treatment of convulsions was in doubt and receiving aminoglutethimide still required explana- that clinical experience had shown that it may cause tion and the experimental evidence accumulated to sexual precocity in some children, masculinization date suggests that dosage, or duration of treatment, of females and other untoward effects. are to be individual young unlikely responsible; hyper- http://pmj.bmj.com/ Following the commercial withdrawal, amino- sensitivity and genetic factors are possibly involved. glutethimide was immediately reinstated as an Investigational New Drug. It was, therefore, pos- Inhibition of steroid biosynthesis sible to continue to supply epileptic patients still The early reports suggesting inhibition of adrenal requiring the drug and also to make it available to steroid biosynthesis by aminoglutethimide were research workers wishing to investigate its activities based on the findings in two children who had as a metabolic inhibitor. To date, research has centred exhibited clinical manifestations and serum electro- around the effects of the drug on thyroid metabolism lyte changes typical of adrenal insufficiency. In both on September 25, 2021 by guest. Protected and adrenal and gonadal steroid biosynthesis. of these patients the administration of ACTH failed to produce any increase in plasma or urinary 17- Anti-thyroid effect hydroxycorticoids (170HCS) and these patients still Following the initial report of goitres and hypo- remained unresponsive to ACTH 6 and 10 months thyroidism in children treated with aminogluteth- respectively after withdrawal of the drug. That imide, further animal studies were initiated to aminoglutethimide was responsible for the adrenal investigate the problem. Pittman & Brown (1966) insufficiency, and not other anticonvulsants being administered the drug for 8 days to intact and taken concomitantly, was demonstrated in one hypophysectomized rats on a low iodine diet. The patient whose condition improved after withdrawal intact animals showed a marked increase in thyroid of the aminoglutethimide but deteriorated quickly weight and depression of radio-iodine uptake. when the drug was re-administered (Camacho
Recommended publications
  • Congenital Adrenal Hyperplasia in the Newborn
    The Leo Fung Center for CAH and Disorders of Sex Development Congenital Adrenal Hyperplasia in the Newborn Contents Introduction 1 What is congenital adrenal hyperplasia? 1 Types of CAH 3 Diagnosing CAH in newborns 4 Treating CAH 5 Untreated CAH 7 CAH in children and young adults 8 Frequently asked questions 9 Glossary 11 Resources 13 Acknowledgments 14 Congenital Adrenal Hyperplasia in the Newborn 1 Introduction This handbook will provide you and your family information about congenital adrenal hyperplasia (CAH). While this guide will not answer all of your questions, it will provide basic medical facts that will help you to talk to your doctors. It is important to know that CAH cannot be cured but it can be treated. Your child will need to take medicine for the rest of his or her life. If your child takes this medicine, he or she should have a completely normal life in every way. Successful treatment requires teamwork between you and your doctor. The doctor will monitor your child in order to know what dose of medicine is needed. We ask that you give your baby the medication on the schedule recommended by your doctor. Your family is not alone. The Leo Fung Center for CAH and Disorders of Sex Development (DSD) at University of Minnesota Amplatz Children’s Hospital, provides a large network of support, including medical specialists, therapists and counselors who all have expertise in caring for patients with CAH. What is congenital adrenal hyperplasia? Let’s begin by examining each word. • Congenital means existing at birth (inherited). • Adrenal means that the adrenal glands are involved.
    [Show full text]
  • Conduct Protocol in Emergency: Acute Adrenal Insufficiency
    ORIGINAL ARTICLE FARES AND SANTOS Conduct protocol in emergency: Acute adrenal insufficiency ADIL BACHIR FARES1*, RÔMULO AUGUSTO DOS SANTOS2 1Medical Student, 6th year, Faculdade de Medicina de São José do Rio Preto (Famerp), São José do Rio Preto, SP, Brazil 2Degree in Endocrinology and Metabology from Sociedade Brasileira de Endocrinologia e Metabologia (SBEM). Assistant Physician at the Internal Medicine Service of Hospital de Base. Researcher at Centro Integrado de Pesquisa (CIP), Hospital de Base, São José do Rio Preto. Endocrinology Coordinator of the Specialties Outpatient Clinic (AME), São José do Rio Preto, SP, Brazil SUMMARY Introduction: Acute adrenal insufficiency or addisonian crisis is a rare comor- bidity in emergency; however, if not properly diagnosed and treated, it may progress unfavorably. Objective: To alert all health professionals about the diagnosis and correct treatment of this complication. Method: We performed an extensive search of the medical literature using spe- cific search tools, retrieving 20 articles on the topic. Results: Addisonian crisis is a difficult diagnosis due to the unspecificity of its signs and symptoms. Nevertheless, it can be suspected in patients who enter the emergency room with complaints of abdominal pain, hypotension unresponsive to volume or vasopressor agents, clouding, and torpor. This situation may be associated with symptoms suggestive of chronic adrenal insufficiency such as hyperpigmentation, salt craving, and association with autoimmune diseases such as vitiligo and Hashimoto’s thyroiditis. Hemodynamically stable patients Study conducted at Faculdade may undergo more accurate diagnostic methods to confirm or rule out addiso- de Medicina de São José do nian crisis. Delay to perform diagnostic tests should be avoided, in any circum- Rio Preto (Famerp), São José do Rio Preto, SP, Brazil stances, and unstable patients should be immediately medicated with intravenous glucocorticoid, even before confirmatory tests.
    [Show full text]
  • Preventable Deaths: Panhypopituitarism and Adrenal Insufficiency
    Preventable Deaths: Panhypopituitarism and adrenal insufficiency. What you need to know What is panhypopituitarism? Your child has been diagnosed with a big scary sounding word, and all you can think is: 'What does this mean? and 'Why have I never heard of this?' Simply put, panhypopituitarism means that your child's pituitary gland does not function properly and as a result, your child is deficient in one or several hormones. Some children have congenital panhypopituitarism, meaning they are born with it. Others have acquired panhypopituitarism following an event such as head trauma, brain tumor surgery, or brain radiation. It is rare enough that is entirely possible, in fact, probable, that you will not initially know anyone else with this disorder. What will my child need? Although the diagnosis and condition can seem intimidating, it is very manageable once you understand what is needed. Unfortunately the condition cannot be cured or reversed, but again, it can be effectively managed. Your child will need to take medications to replace the missing hormones. These might include thyroid hormone, growth hormone, cortisol, and/or possibly others. Your doctor will go over these with you, as dosages vary from child to child. Most medications are taken orally, but growth hormone must be taken by daily injection. Your endocrinologist will work with you and your child to achieve the proper dosages and will guide you in how to administer any necessary medications. Why is it sometimes life threatening? What is adrenal insufficiency? Of the hormone deficiencies your child may have, the most critical is cortisol, also known as the 'stress hormone.' Cortisol is essential for life , and is therefore the central focus of this guide.
    [Show full text]
  • Mechanisms and Clinical Consequences of Critical Illness Associated Adrenal Insufficiency Paul E
    Mechanisms and clinical consequences of critical illness associated adrenal insufficiency Paul E. Marik Purpose of review Abbreviations Adrenal insufficiency is being diagnosed with increasing ACTH adrenocorticotrophic hormone frequency in critically ill patients. There exists, however, ARDS acute respiratory distress syndrome CBG corticosteroid-binding globulin much controversy in the literature as to the nature of this CIRCI critical illness-related corticosteroid insufficiency entity, including its pathophysiology, epidemiology, CRH corticotrophin-releasing hormone HDL high-density lipoprotein diagnosis and treatment. The review summarizes our HPA hypothalamic–pituitary–adrenal current understanding of the causes and consequences of SAS sympatho-adrenal system TNF tumor necrosis factor adrenal insufficiency in critically ill patients. Relevant findings Activation of the hypothalamic–pituitary–adrenal axis with ß 2007 Lippincott Williams & Wilkins the production of cortisol is a fundamental component of 1070-5295 the stress response and is essential for survival of the host. Dysfunction of the hypothalamic–pituitary–adrenal axis with decreased glucocorticoid activity is being increasingly Introduction recognized in critically ill patients, particularly those with The stress system receives and integrates a diversity of sepsis. This condition is best referred to as ‘critical illness- cognitive, emotional, neurosensory and peripheral related corticosteroid insufficiency’. Critical illness-related somatic signals that arrive through distinct
    [Show full text]
  • Anemia LECTURE in INTERNAL MEDICINE for IV COURSE
    Essentials of Diagnosis, Treatment and Prevention of Major Endocrine Diseases: Diseases of the Adrenal Glands. Adrenal Insufficiency. Adrenal Hyperfunction. Hormonally Active Tumors. LECTURE IN INTERNAL MEDICINE FOR IV COURSE STUDENTS M. Yabluchansky, L. Bogun, L. Martymianova, O. Bychkova, N. Lysenko, N. Makienko V.N. Karazin National University Medical School’ Internal Medicine Dept. Plan of the Lecture • Definition • Epidemiology • Risk factors • Etiology • Mechanisms • Classification • Clinical presentation • Diagnosis • Treatment • Prognosis • Prophylaxis • Abbreviations • Diagnostic guidelines http://www.thelancet.com/pb/assets/raw/pb/assets/raw/Lancet/clinical/diseases/Cushing's.jpg http://peninsulamassage.com.au/wp-content/uploads/2012/08/Adrenal_Glands_1.jpg Definition Diseases of the Adrenal Glands • Diseases of the Adrenal Glands are conditions that interfere with the normal functioning of the adrenal glands and may cause hyperfunction (Overactive Adrenal Glands) or hypofunction (Underactive Adrenal Glands), and may be congenital or acquired. • There are two parts of the adrenal glands, the cortex, derived from mesenchymal cells, and the medulla, derived from neuroectodermal cells; first one produces mineralocorticoids, glucocorticoids, and androgens; and second one produces epinephrine (adrenaline) and norepinephrine(noradrenaline). https://en.wikipedia.org/wiki/Adrenal_gland_disorder Epidemiology Epidemiologic study of adrenal gland disorders in Japan • The total numbers of patients in Japan in 1997 were estimated as 1,450
    [Show full text]
  • A Case of Waterhouse-Friderichsen Syndrome in a Patient with Streptococcus Pyogenes Bacteremia
    A Case of Waterhouse-Friderichsen Syndrome in a Patient with Streptococcus Pyogenes Bacteremia D. I. BACAL, B. E. CATALDO, P. M. LUCERI, G. VARALLO Rowan University School of Osteopathic Medicine, and Jefferson University Hospital System, NJ INTRODUCTION Waterhouse-Friderichsen Syndrome (WFS) is a rare condition of adrenal insufficiency (AI) due to adrenal hemorrhage after a severe infection. The incidence of WFS has been estimated at 0.14-1.8% based on post-mortem studies.1 It has been associated with a 55-60% mortality rate.2 Meningococcal disease comprises up to 80% of WFS, but additional causative agents continue to be identified.3 This is the case of a 52-year-old female with toxic shock syndrome from Group A Streptococcal (GAS) bacteremia who developed bilateral adrenal hemorrhage & subsequent AI. Septic shock occurred during an initial hospitalization & resolved. Four weeks after discharge she presented with evidence of an adrenal crisis. CT scans demonstrated bilateral adrenal enlargement concerning for adrenal hemorrhage. Primary AI was confirmed via ACTH stimulation testing. A literature search found fewer than ten cases of WFS described due to streptococcal bacteremia. BACKGROUND OF WATERHOUSE-FRIDERICHSEN SYNDROME CONCLUSIONS • Bilateral adrenal hemorrhage has multiple causes: coagulopathies, sepsis from infection, hypotension (i.e. MI), severe volume loss, or surgical WFS is a rare, often fatal, clinical condition that can develop after a intervention 4 severe infection & leads to adrenal hemorrhage. Many factors • Signs include pallor, weakness, fatigue, anorexia, nausea, vomiting, and lethargy 5,6 & labs often depict hyponatremia & hyperkalemia contribute to the pathogenicity of WFS, including coagulopathy, • Increased skin pigmentation develops due to an increase in proopiomelanocortin (POMC), Bacterial ischemia & bacterial toxins.
    [Show full text]
  • Case 1: 54-Year-Old Woman with Adrenal Insufficiency
    ENDORAMA March 22, 2012 54-year-old woman with adrenal insufficiency Celeste Thomas, MD Case 1 Chief Complaint Adrenal crisis in Dec 2011 I didn’t know what was going on When I finally reached my doctor she told me a story of one of her patients who has a crisis every time her grandchildren visit What do you think? History of Present Illness Feeling Horrible – Dermatologist recommended she see an Intolerable myalgias endocrinologist, Diagnosed with diagnosed with fibromyalgia panhypopituitarism 2004 2009 2011 Viral illness: 2007 2010 myalgias, weakness, 2012 fatigue Adrenal Needed Help: Not returned to Crisis fibroandfatigue.com previous state of health since Started natural supplements History Past Medical History Medications Raynaud’s phenomena Synthroid 50 mcg daily diagnosed in 2000 Hydrocortisone 12.5 mg Fibromyalgia in 2007 8AM, 5 mg at noon, 2.5 Hypopituitarism in 2010 mg at 4pm, 2.5 mg at 8pm Allergies Omnitrope (recombinant human growth hormone) Iodinated contrast causes 0.3 mg subcutaneous anaphylaxis daily Hydroxychloroquine Clonazepam 0.5 mg 2- causes a rash 3x/night Nexium Calcium Vitamin D Probiotics History Family History Social History Mother is 80 years old Lives with her husband with history of ER+ and youngest son breast cancer Spends her days in Father is 80 years old pajamas due to fatigue with T2DM and obesity and weakness 1 sibling, brother who Smoked cigarettes for is well two years in college 3 children, all are well Does not drink alcohol or use illicit drugs Review of Systems Constitutional:
    [Show full text]
  • Management of Hypopituitarism
    Journal of Clinical Medicine Review Management of Hypopituitarism Krystallenia I. Alexandraki 1 and Ashley B. Grossman 2,3,* 1 Endocrine Unit, 1st Department of Propaedeutic Medicine, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; [email protected] 2 Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK 3 Centre for Endocrinology, Barts and the London School of Medicine, London EC1M 6BQ, UK * Correspondence: [email protected] Received: 18 November 2019; Accepted: 2 December 2019; Published: 5 December 2019 Abstract: Hypopituitarism includes all clinical conditions that result in partial or complete failure of the anterior and posterior lobe of the pituitary gland’s ability to secrete hormones. The aim of management is usually to replace the target-hormone of hypothalamo-pituitary-endocrine gland axis with the exceptions of secondary hypogonadism when fertility is required, and growth hormone deficiency (GHD), and to safely minimise both symptoms and clinical signs. Adrenocorticotropic hormone deficiency replacement is best performed with the immediate-release oral glucocorticoid hydrocortisone (HC) in 2–3 divided doses. However, novel once-daily modified-release HC targets a more physiological exposure of glucocorticoids. GHD is treated currently with daily subcutaneous GH, but current research is focusing on the development of once-weekly administration of recombinant GH. Hypogonadism is targeted with testosterone replacement in men and on estrogen replacement therapy in women; when fertility is wanted, replacement targets secondary or tertiary levels of hormonal settings. Thyroid-stimulating hormone replacement therapy follows the rules of primary thyroid gland failure with L-thyroxine replacement.
    [Show full text]
  • Congenital Adrenal Hyperplasia
    Patient Information Publications Clinical Center National Institutes of Health Facts about CAH Congenital Adrenal Hyperplasia This information was prepared by your An organ at the base of the brain, called health care team to help you learn about the pituitary gland, helps regulate the congenital adrenal hyperplasia (CAH). adrenal glands. CAH is a genetic disorder of the adrenal glands that affects the body's general health, growth, and development. What are the adrenal glands? The adrenal glands are a pair of walnut-sized organs above the kidneys. They make hormones, which act like chemical messengers to affect other organs in the body. Each adrenal gland has two parts: the medulla (the inner part), and the cortex (the outer part).The medulla makes the hormone adrenaline. The cortex makes the hormones cortisol, aldosterone, and androgens. CAH affects how the adrenal cortex works. In severe cases, the adrenal medulla may also not function normally. What do adrenal hormones do? Hormones made by the adrenal glands are important for the body's normal function. Cortisol affects energy levels, sugar levels, blood pressure, and the Patient Information Publications 1 Facts about CAH: Congenital Adrenal Hyperplasia body's response to illness or injury. short stature. Girls exposed to high levels Aldosterone helps maintain the proper of androgens before birth may have salt level. Androgens are male-like abnormal external genitalia at birth. hormones needed for normal growth Although their internal female organs are and development in both boys and girls. normal, excess androgens may also Adrenalin affects blood sugar levels, affect puberty and cause irregular men- blood pressure, and the body's response strual periods.
    [Show full text]
  • Adrenal Insufficiency
    Adrenal Insufficiency Moises Auron, MD,*† Nouhad Raissouni, MD‡ *Department of Hospital Medicine, Medicine Institute, Cleveland Clinic, Cleveland, OH. †Department of Pediatric Hospital Medicine, Cleveland Clinic Children’s, Cleveland, OH. ‡Department of Pediatric Endocrinology, Cleveland Clinic Children’s, Cleveland, OH. Educational Gaps Pediatricians must have increased awareness of clinical and biochemical manifestations of congenital adrenal hyperplasia in newborns to institute appropriate diagnostic workup and early initiation of corticosteroid supplementation. Pediatricians must also have increased awareness of clinical and biochemical manifestations of adrenal insufficiency (regardless of its cause) and institute prompt treatment with corticosteroid supplementation. Objectives After completing this article, readers should be able to: 1. Recognize the clinical and biochemical manifestations of congenital adrenal hyperplasia and its different subtypes. 2. Appraise the importance of early administration of corticosteroid supplementation in patients with congenital adrenal hyperplasia. 3. Recognize early the clinical and biochemical manifestations of adrenal insufficiency. 4. Distinguish the different levels of treatment of patients with adrenal insufficiency: long term, stress supplementation, and treatment of adrenal crisis. Abstract Adrenal insufficiency is a life-threatening condition that occurs secondary to impaired secretion of adrenal glucocorticoid and mineralocorticoid hormones. This condition can be caused by primary destruction or AUTHOR DISCLOSURE Drs Auron and dysfunction of the adrenal glands or impairment of the hypothalamic- Raissouni have disclosed no financial pituitary-adrenal axis. In children, the most common causes of primary relationships relevant to this article. This fi commentary does not contain a discussion of adrenal insuf ciency are impaired adrenal steroidogenesis (congenital an unapproved/investigative use of adrenal hyperplasia) and adrenal destruction or dysfunction a commercial product/device.
    [Show full text]
  • Hypothyroidism and Adrenal Insufficiency in Sepsis and Hemorrhagic Shock
    ORIGINAL ARTICLE Hypothyroidism and Adrenal Insufficiency in Sepsis and Hemorrhagic Shock Hao Chih Ho, MD; Alyssa D. Chapital, MD; Mihae Yu, MD Hypothesis: We hypothesized that hypothyroidism and Main Outcome Measures: Incidence of hypothyroid- adrenal insufficiency frequently occur together in criti- ism and adrenal insufficiency and mortality. cally ill patients. Results: Mean (SD) age was 62 (19) years. The mean Design: A prospective observational study. (SD) Acute Physiology and Chronic Health Evaluation II score was 21 (5). Twenty-seven patients (40.9%) had severe sepsis, 31 (46.9%) had septic shock, and 8 (12.1%) Setting: Surgical intensive care unit of a university- affiliated tertiary referral center. had hemorrhagic shock. Five patients (7.6%) had hy- pothyroidism alone and 35 (53.0%) had only adrenal in- sufficiency. Eight patients (12.1%) had both hypothy- Patients: Sixty-six consecutive patients with severe sep- roidism and adrenal insufficiency. All patients with sis, septic shock, and hemorrhagic shock who required endocrine abnormalities were treated. Mortality for the pulmonary artery catheterization for resuscitation were total group was 15 (22.7%) of 66 patients. studied. Conclusion: There is a 12% incidence of simultaneous Interventions: Thyrotropin and baseline cortisol lev- hypothyroidism and adrenal insufficiency in our study els were obtained at 3 AM followed by intravenous injec- and the routine testing for both may be indicated in this tion of 250 µg of cosyntropin, a synthetic adrenocorti- population of critically ill patients. cotropic hormone derivative. A second measurement of the cortisol level was performed 1 hour later. Arch Surg. 2004;139:1199-1203 ULTIPLE ENDOCRINE reported incidences of adrenal insuffi- derangements have ciency in critically ill patients ranging from been described in criti- 0% to 95%.
    [Show full text]
  • Adrenal Fatigue • Steroid Replacement the HPA Axis in Adrenal Insufficiency
    Demystifying Medicine: Addison’s Disease Meets Chromatin Biology 4/25/2017 Lynnette K. Nieman Daniel R. Larson DEOB, NIDDK LRBGE, NCI Disclosure • Adrenal Section editor and author, UpToDate Cortisol is a bi-modal hormone • Made by the adrenal gland cortex (outer layer) • Baseline/day-to-day control of metabolism (fuel) • Stress à increased amounts immunosuppressant and anti-inflammatory Adrenal Gland Hormones Cortisol Aldosterone DHEA (glucocorticoids) (mineralocorticoids) (androgens) Hypothalamic-Pituitary-Adrenal Axis CRH hypothalamus pituitary ACTH Cortisol adrenal Renin ALDO Cortisol daily rhythm The right amout of cortisol is critical Too much Just right! Too little Cushing’s Adrenal Syndrome Insufficiency Untreated, complete adrenal insufficiency leads to circulatory collapse and death. FAQs about Adrenal Insufficiency • Causes • Diagnosis – Clinical Features • Adrenal fatigue • Steroid Replacement The HPA Axis in Adrenal Insufficiency Primary Secondary Normal Adrenal Adrenal Insufficiency Insufficiency hypothalamus CRH CRH CRH pituitary ACTH ACTH ACTH Cortisol Cortisol Cortisol adrenal Renin ALDO Renin ALDO Renin ALDO Primary Adrenal Insufficiency: Causes Causes Suggestive features Primary AI Pigmentation, hypotension Idiopathic Autoimmune Most common Infections: TB, fungal, 15% of patients in US series AIDS-associated (CMV) Space occupying mass Metastases (lung, breast, kidney, gut, lymphoma), blood, heparin Rx Bilat Adx or Rx Ketoconazole, mitotane, aminoglutethimide, metyrapone, etomidate Polyglandular Failure 1 Hypopara, candidiasis,
    [Show full text]