Araneae), Including a New Species of Ochyrocera

Total Page:16

File Type:pdf, Size:1020Kb

Araneae), Including a New Species of Ochyrocera PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3577, 21 pp., 15 figures June 28, 2007 First Records of Extant Hispaniolan Spiders of the Families Mysmenidae, Symphytognathidae, and Ochyroceratidae (Araneae), Including a New Species of Ochyrocera GUSTAVO HORMIGA,1 FERNANDO ALVAREZ-PADILLA,2 AND SURESH P. BENJAMIN3 ABSTRACT A new species of ochyroceratid spider, Ochyrocera cachote, n.sp., is described and its unique web architecture is documented. This is the first record of Ochyroceratidae for the extant fauna of Hispaniola. Additional new family records include Symphytognathidae (Patu sp. and Symphytognatha sp.) and Mysmenidae (Microdipoena sp.), with the latter family having been previously recorded from the fossil amber fauna. This makes a new total of 46 spider families recorded from the extant Hispaniolan fauna, but on the whole the island’s araneofauna remains poorly known and warrants further investigation. INTRODUCTION the world where the fossil fauna is most similar to that of the Recent fauna. The The taxonomic knowledge of the spider spiders of the Dominican Republic preserved fauna of the Dominican Republic is unique in amber are relatively well known (Penney, because more families are known from fossils 2006). The Dominican amber and the extant in Miocene amber than are recorded from fauna are ecologically comparable because the extant species (Penney, 1999; Penney and amber was formed in a tropical climate similar Pe´rez-Gelabert, 2002). It is also the region of to that in the region at the present time 1 Department of Biological Sciences, The George Washington University, Washington, DC 20052; Research Associate, Department of Invertebrates, American Museum of Natural History ([email protected]). 2 Department of Biological Sciences, The George Washington University, Washington, DC 20052 ([email protected]). 3 Department of Biological Sciences, The George Washington University, Washington, DC 20052 ([email protected]). Copyright E American Museum of Natural History 2007 ISSN 0003-0082 2 AMERICAN MUSEUM NOVITATES NO. 3577 (Penney and Pe´rez-Gelabert, 2002). However, Lesser Antilles (Dominica and Guadaloupe). apart from the pioneering works by Elizabeth In this paper we describe the new species in Bryant (1943, 1945, 1948), the extant spider detail and document its web architecture. fauna of Hispaniola has not been studied in Additionally, we report the presence of extant much detail (for a history of Hispaniolan species from the araneoid families Mysme- araneology, see Penney and Pe´rez-Gelabert, nidae and Symphytognathidae in the island 2002). During the course of a recent field trip for the first time. Two fossil species of to the Dominican Republic we had the Mysmenidae, Mysmenopsis lissycoleyae Pen- opportunity to collect and study spiders in ney, 2000 and Dominicanopsis grimaldii four areas with different habitats and eleva- Wunderlich, 2004, have been described from tions. In this paper we report on three spider Dominican amber (Penney, 2000; Wunderlich, families that were previously undiscovered for 2004b). The family Symphytognathidae had the extant fauna of Hispaniola: Ochyro- not been recorded before. Schawaller’s (1981) ceratidae, Mysmenidae, and Symphyto- records of eight symphytognathid specimens gnathidae. The ochyroceratid species is mor- in Dominican amber held at the Staatliches phologically very similar to one of the species Museum fur Naturkunde (Stuttgart, Ger- described from amber, and it is formally many) are misidentifications of theridiids described here. (Wunderlich, 2004c: 228). Ochyroceratidae is a relatively small family (146 described species in 13 genera) of small MATERIALS AND METHODS ecribellate haplogyne spiders with a cosmotrop- ical distribution (Platnick, 2006). Although Taxonomic descriptions follow the format the natural history of ochyroceratids is not of Hormiga (1994, 2002). Specimens of fossil well known (Machado, 1951; Deeleman- Ochyroceratidae in Dominican amber were Reinhold, 1995), it seems that many of them not examined. Discussion of their relation- build sheet webs, sometimes with conspicuous ships is based on the published text and parallel silk lines in the sheet (figs. 13B, 14D). figures. Specimens were examined and illus- Recently, Wunderlich (1988, 2004a) described trated using a Leica MZ 16A stereoscopic two fossil species of Ochyroceratidae from the microscope with a camera lucida. Further Dominican Republic (Arachnolithulus pyg- details were studied using a Leica DMRM maeus Wunderlich, 1988 and A. longipes compound microscope with a drawing tube. Wunderlich, 2004). To accommodate the first Some microscopic images were recorded using of these two Dominican fossil species he a Nikon DXM1200F digital camera and erected the genus Arachnolithulus Wun- stacked using the software package Auto- derlich, 1988. However, Wunderlich was un- Montage. A LEO 1430VP scanning electron certain as to relationships of Arachnolithulus, microscope was also used to study and pointing out the need for more specimens, photograph morphological features. Left fossil and extant. Penney (1999) predicted structures (e.g., palps, legs) are depicted unless extant Hispaniolan ochyroceratids (and mys- otherwise stated. Hairs and macrosetae are menids) based on their occurrence in the usually not depicted in the final drawings. All amber fauna. Alayo´n-Garcı´a (2001) reported morphological measurements are given in the presence of ochyroceratids from Navassa, millimeters. Somatic morphology measure- a 5.2-km2 island 64 km west of Hispaniola. ments were taken using a scale reticle in the During our fieldwork in the Dominican dissecting microscope. Eye diameters are Republic we found a new species of Ochyro- taken from the span of the lens. Cephalo- ceratidae in leaf litter, in a patch of cloud thorax length and height were measured in forest near Paraı´so (Barahona Province). This lateral view, and its width was taken at the new species is morphologically similar to the widest point. Similarly, the length and height extinct Dominican species Arachnolithulus of the abdomen were measured in lateral view, longipes (known after a single male specimen and the width was taken as the widest point as in amber) and to the extant Ochyrocera seen from a dorsal view. Measurements of the thibauldi Emerit and Lopez, 1985 from the abdomen are only approximations because the 2007 HORMIGA ET AL.: HISPANIOLAN SPIDERS 3 abdomen size changes more easily in preserved MAP major ampullate gland spigot(s) specimens than do other more sclerotized mAP minor ampullate gland spigot(s) parts (e.g., the chelicerae). Total length was PI piriform gland spigot(s) measured in lateral view and is also an PLS posterior lateral spinneret approximation because it involves the size of PMS posterior median spinneret the abdomen and its relative position. PTS posterior tracheal spiracle Approximate femur lengths were measured in lateral view, without detaching the legs TAXONOMY from the animal, by positioning the article being measured perpendicularly. Female gen- italia were excised using surgical blades or OCHYROCERATIDAE FAGE, 1912 sharpened needles. Epigyna and palps were OCHYROCERA SIMON, 1891 transferred to methyl salicylate (Holm, 1979) Type Species: Ochyrocera arietina Simon, for examination under the microscope, tem- 1891 by original designation. porarily mounted as described in Grandjean Composition: In addition to O. cachote, (1949) and Coddington (1983). Male palps n.sp., the genus Ochyrocera includes 21 species examined with the SEM were first excised and (Platnick 2006), most of them from the transferred to a vial with 70% ethanol and Neotropical region. There are also species then cleaned ultrasonically for 1–3 minutes. described from Cuba, the Lesser Antilles, The specimen was then transferred to absolute including the type species, and Samoa. ethanol and left overnight. After critical point drying, the specimens were glued to rounded aluminum rivets using an acetone solution of Ochyrocera cachote, new species Acryloid B-72 and coated with gold-palladium figures 1–12 for examination with the SEM. For SEM TYPE: Male holotype and female paratype examination of the tracheal system, the non- from Barahona Province, Paraı´so, Reserva chitinous abdominal tissue was digested with Natural Cachote, cloud forest surrounded by SIGMA Pancreatin LP 1750 enzyme complex secondary growth, N 18u05954.80:W (Alvarez-Padilla and Hormiga, in press) in 71u11922.00, 1220 m, 6–9.IV.2005, G. Hor- a solution of sodium borate prepared follow- miga, F. Alvarez-Padilla, and S.P. Benjamin ing the concentrations described in Dingerkus (deposited in MCZ). and Uhler (1977). ETYMOLOGY: The species epithet is a noun Webs were photographed after dusting in apposition taken from the type locality. them with cornstarch (Eberhard, 1976) and DIAGNOSIS: Males of Ochyrocera cachote, photographed with a Nikon F100 using a 60- n.sp. can be distinguished from other species mm macro lens and a speedlight. All photo- of Ochyrocera by the absence of a clypeal graphs have associated voucher specimens. apophysis (fig. 1B) and the details of the cheliceral teeth (fig. 2C, D), including the ANATOMICAL ABBREVIATIONS presence of a large tooth toward the base of the cheliceral furrow. The cymbial apophysis Male Palp and the embolus shape (figs. 2A, B, 8A–C) are E embolus also diagnostic. The lack of a monographic m30 claw extensor muscle treatment of Ochyrocera and the absence of T tegulum tm29 tendon of claw
Recommended publications
  • Further Study of Two Chinese Cave Spiders 77 Doi: 10.3897/Zookeys.870.35971 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 870: 77–100 (2019) Further study of two Chinese cave spiders 77 doi: 10.3897/zookeys.870.35971 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Further study of two Chinese cave spiders (Araneae, Mysmenidae), with description of a new genus Chengcheng Feng1, Jeremy A. Miller2, Yucheng Lin1, Yunfei Shu1 1 Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China 2 Department of Biodiversity Discovery, Naturalis Biodiversity Center, Postbus 9517 2300 RA Leiden, The Netherlands Corresponding author: Yucheng Lin ([email protected]) Academic editor: Charles Haddad | Received 08 May 2019 | Accepted 09 July 2019 | Published 7 August 2019 http://zoobank.org/4167F0DE-2097-4F3D-A608-3C8365754F99 Citation: Feng C, Miller JA, Lin Y, Shu Y(2019) Further study of two Chinese cave spiders (Araneae, Mysmenidae), with description of a new genus. ZooKeys 870: 77–100. https://doi.org/10.3897/zookeys.870.35971 Abstract The current paper expands knowledge of two Chinese cave spider species originally described in the genus Maymena Gertsch, 1960: M. paquini Miller, Griswold & Yin, 2009 and M. kehen Miller, Griswold & Yin, 2009. With the exception of these two species, the genus Maymena is endemic to the western hemisphere, and new evidence presented here supports the creation of a new genus for the Chinese species, which we name Yamaneta gen. nov. The male of Y. kehen is described for the first time. Detailed illustrations of the habitus, male palps and epigyne are provided for these two species, as well as descriptions of their webs.
    [Show full text]
  • First Records and Three New Species of the Family Symphytognathidae
    ZooKeys 1012: 21–53 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1012.57047 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research First records and three new species of the family Symphytognathidae (Arachnida, Araneae) from Thailand, and the circumscription of the genus Crassignatha Wunderlich, 1995 Francisco Andres Rivera-Quiroz1,2, Booppa Petcharad3, Jeremy A. Miller1 1 Department of Terrestrial Zoology, Understanding Evolution group, Naturalis Biodiversity Center, Darwin- weg 2, 2333CR Leiden, the Netherlands 2 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands 3 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 12121 Thailand Corresponding author: Francisco Andres Rivera-Quiroz ([email protected]) Academic editor: D. Dimitrov | Received 29 July 2020 | Accepted 30 September 2020 | Published 26 January 2021 http://zoobank.org/4B5ACAB0-5322-4893-BC53-B4A48F8DC20C Citation: Rivera-Quiroz FA, Petcharad B, Miller JA (2021) First records and three new species of the family Symphytognathidae (Arachnida, Araneae) from Thailand, and the circumscription of the genus Crassignatha Wunderlich, 1995. ZooKeys 1012: 21–53. https://doi.org/10.3897/zookeys.1012.57047 Abstract The family Symphytognathidae is reported from Thailand for the first time. Three new species: Anapistula choojaiae sp. nov., Crassignatha seeliam sp. nov., and Crassignatha seedam sp. nov. are described and illustrated. Distribution is expanded and additional morphological data are reported for Patu shiluensis Lin & Li, 2009. Specimens were collected in Thailand between July and August 2018. The newly described species were found in the north mountainous region of Chiang Mai, and Patu shiluensis was collected in the coastal region of Phuket.
    [Show full text]
  • David Penney
    ARTÍCULO: NEW EXTANT AND FOSSIL DOMINICAN REPUBLIC SPIDER RECORDS, WITH TWO NEW SYNONYMIES AND COMMENTS ON TAPHONOMIC BIAS OF AMBER PRESERVATION David Penney Abstract: A collection of 23 identifiable extant spider species from the Dominican Republic revealed eight (= 35%) new species records for the country and five (= 22%) for the island of Hispaniola. The collection includes the first record of the family Prodidomidae from Hispaniola. Phantyna guanica (Gertsch, 1946) is identified as a junior synonym of Emblyna altamira (Gertsch & Davis, 1942) (Dictynidae) and Ceraticelus solitarius Bryant, 1948 is identified as a junior synonym of C. paludigenus Crosby & Bishop, 1925 (Linyphiidae). Such a large proportion of new records in such a small sample demonstrates that the extant spider fauna of the Dominican Republic is poorly known ARTÍCULO: and is worthy of further investigation, particularly in light of its potential for quantifying New extant and fossil Dominican bias associated with the amber-preserved fauna. New records of fossil spider species Republic spider records, with two preserved in Miocene amber are provided. The taphonomic bias towards a significantly new synonymies and comments higher number of male compared to female spiders as inclusions in Dominican Republic on taphonomic bias of amber amber is a genuine phenomenon. preservation Key words: Arachnida, Araneae, Dictynidae, Linyphiidae, Miocene, palaeontology, taphonomy, taxonomy, Hispaniola. David Penney Taxonomy: Department of Earth Sciences Emblyna altamira (Gertsch & Davis,
    [Show full text]
  • The Placement of the Spider Genus Periegops and the Phylogeny of Scytodoidea (Araneae: Araneomorphae)
    Zootaxa 3312: 1–44 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) The placement of the spider genus Periegops and the phylogeny of Scytodoidea (Araneae: Araneomorphae) FACUNDO M. LABARQUE1 & MARTÍN J. RAMÍREZ1 1Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina. [email protected] / [email protected] Abstract The relationships of Scytodoidea, including the families Drymusidae, Periegopidae, Scytodidae and Sicariidae, have been con- tentious for a long time. Here we present a reviewed phylogenetic analysis of scytodoid spiders, emphasizing Periegops, the only genus in the family Periegopidae. In our analysis the Scytodoidea are united by the fusion of the third abdominal entapo- physes into a median lobe, the presence of female palpal femoral thorns and associated cheliceral stridulatory ridges, a mem- branous lobe on the cheliceral promargin, and the loss of minor ampullate gland spigots. A basal split within Scytodoidea defines two monophyletic groups: Sicariidae and a group formed by Scytodidae as the sister group of Periegopidae plus Dry- musidae, all united by having bipectinate prolateral claws on tarsi I–II, one major ampullate spigot accompanied by a nubbin, and the posterior median spinnerets with a mesal field of spicules. Periegops is the sister group of Drymusidae, united by the regain of promarginal cheliceral teeth and a triangular cheliceral lamina, which is continuous with the paturon margin. Key words: Drymusa, Drymusidae, Haplogyne, morphology, Scytodes, Stedocys, Scytodidae, Sicariidae, Sicarius, Loxosceles Introduction The family Periegopidae currently comprises only the genus Periegops, with two species: the type species Perie- gops suteri (Urquhart) from the Banks Peninsula on the South Island of New Zealand (Vink 2006), and Periegops australia Forster, from southeastern Queensland (Forster 1995).
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript Molecular phylogenetics of the spider family Micropholcommatidae (Arachni‐ da: Araneae) using nuclear rRNA genes (18S and 28S) Michael G. Rix, Mark S. Harvey, J. Dale Roberts PII: S1055-7903(07)00386-7 DOI: 10.1016/j.ympev.2007.11.001 Reference: YMPEV 2688 To appear in: Molecular Phylogenetics and Evolution Received Date: 10 July 2007 Revised Date: 24 October 2007 Accepted Date: 9 November 2007 Please cite this article as: Rix, M.G., Harvey, M.S., Roberts, J.D., Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S), Molecular Phylogenetics and Evolution (2007), doi: 10.1016/j.ympev.2007.11.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S) Michael G. Rix1,2*, Mark S. Harvey2, J. Dale Roberts1 1The University of Western Australia, School of Animal Biology, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia. E-mail: [email protected] E-mail: [email protected] 2Western Australian Museum, Department of Terrestrial Zoology, Locked Bag 49, Welshpool D.C., Perth, WA 6986, Australia.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Supplementary Materials 1
    SUPPLEMENTARY MATERIALS 1 ----------------------------------------------------------------------------------------------------------------------- Record breaking achievements by spiders and the scientists who study them Stefano Mammola, Peter Michalik, Eileen Hebets & Marco Isaia ----------------------------------------------------------------------------------------------------------------------- This file contains comments about the official biological records held by spiders as listed in the Guinness World Records database (www.guinnessworldrecords.com). For each record, we report the record holder according to the Guinness World Records database, as of October 4th, 2017. We hereby list: - Official biological records confirmed by scientific literature, which we have included in the Spider World Records. - Official biological records that we consider incorrect, i.e. needing an update in the Guinness World Records. Marked with one asterisk (*). - Official biological records that we consider incomplete, e.g., for which we found new information or added specifications (see main text for details). Marked with two asterisks (**). - Official biological records that we have not reported due to low pertinence to our work or to the impossibility to confirm them using scientific literature. Marked with three asterisks (***). Full bibliographic information for the references cited herein can be found in the reference section of the main text. 1 - Rarest spider ** Record holder (GWR, 2017): Adelocosa anops, a cave-dwelling spider inhabiting a few caves in the Hawaiian island of Kauai, covering an area of 10.5 km 2. Censuses for this species has never documented more than 30 individuals. Comment: if we consider only the range occupied by the spider, there are other species which can compete for the record (see "Rarest spiders" in the main text). For instance, Nothophantes horridus is recorded exclusively from two abandoned limestone quarries near Plymouth (UK), covering overall a surface of ca.
    [Show full text]
  • Arthropod Population Dynamics in Pastures Treated with Mirex-Bait to Suppress Red Imported Fire Ant Populations
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1975 Arthropod Population Dynamics in Pastures Treated With Mirex-Bait to Suppress Red Imported Fire Ant Populations. Forrest William Howard Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Howard, Forrest William, "Arthropod Population Dynamics in Pastures Treated With Mirex-Bait to Suppress Red Imported Fire Ant Populations." (1975). LSU Historical Dissertations and Theses. 2833. https://digitalcommons.lsu.edu/gradschool_disstheses/2833 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Dippenaar MARION.Qxd
    The biodiversity and species composition of the spider community of Marion Island, a recent survey (Arachnida: Araneae) T.T. KHOZA, S.M. DIPPENAAR and A.S. DIPPENAAR-SCHOEMAN Khoza, T.T., S.M. Dippenaar and A.S. Dippenaar-Schoeman. 2005. The biodiversity and species composition of the spider community of Marion Island, a recent survey (Arach- nida: Araneae). Koedoe 48(2): 103–107. Pretoria. ISSN 0075-6458. Marion Island, the larger of the Prince Edward Islands, lies in the sub-Antarctic bio- geographic region in the southern Indian Ocean. From previous surveys, four spider species are known from Marion. The last survey was undertaken in 1968. During this study a survey was undertaken over a period of four weeks on the island to determine the present spider diversity and to record information about the habitat preferences and general behaviour of the species present. Three collection methods (active search, Tull- gren funnels and pitfall traps) were used, and spiders were sampled from six habitat sites. A total of 430 spiders represented by four families were collected, Myro kergue- lenesis crozetensis Enderlein, 1909 and M. paucispinosus Berland, 1947 (Desidae), Prinerigone vagans (Audouin, 1826) (Linyphiidae), Cheiracanthium furculatum Karsch, 1879 (Miturgidae) and an immature Salticidae. The miturgid and salticid are first records. Neomaso antarticus (Hickman, 1939) (Linyphiidae) was absent from sam- ples, confirming that the species might have been an erroneous record. Key words: Araneae, biodiversity, Desidae, Linyphiidae, Marion Island, Miturgidae, Salticidae, spiders. T.T. Khoza & S.M. Dippenaar, School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga, 0727 Republic of South Africa; A.S.
    [Show full text]
  • Araneae, Linyphiidae)
    Zootaxa 3841 (1): 067–089 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3841.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:6711CA40-1152-4833-98D0-9930E2B5DD17 New species and records of linyphiid spiders from Laos (Araneae, Linyphiidae) ANDREI V. TANASEVITCH Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect, 33, Moscow 119071, Russia. E-mail: [email protected] Abstract Recent linyphiid collections from Laos as well as some additional specimens from Thailand and West Malaysia are ex- amined. Six species and two genera are described as new to science: Bathyphantes paracymbialis n. sp., Nematogmus asi- aticus n. sp., Theoa hamata n. sp.; Asiagone n. gen. is erected for Asiagone signifera n. sp. (type species) and A. perforata n. sp.; Laogone n. gen. is established for Laogone cephala n. sp. The following new synonyms are proposed: Gorbothorax Tanasevitch, 1998 n. syn. = Nasoona Locket, 1982; Paranasoona Heimer, 1984 n. syn. and Millplophrys Platnick, 1998 n. syn. = Atypena Simon, 1894; Gorbothorax ungibbus Tanasevitch, 1998 n. syn. = Oedothorax asocialis Wunderlich, 1974; Hylyphantes birmanicus (Thorell, 1895) n. syn. = H. graminicola (Sundevall, 1830). The following new combina- tions are proposed: Atypena cirrifrons (Heimer, 1984) n. comb. ex from Paranasoona; A. pallida (Millidge, 1995) and A. crocatoa (Millidge, 1995) both n. comb. ex Millplophrys; Nasoona asocialis (Wunderlich, 1974) n. comb. ex Oedothorax Bertkau, 1883; N. asocialis (Wunderlich, 1974), N. comata (Tanasevitch, 1998), N. conica (Tanasevitch, 1998), N. setifera (Tanasevitch, 1998) and N. wunderlichi (Brignoli, 1983), all n.
    [Show full text]
  • 1 CHECKLIST of ILLINOIS SPIDERS Over 500 Spider Species Have Been
    1 CHECKLIST OF ILLINOIS SPIDERS Over 500 spider species have been reported to occur in Illinois. This checklist includes 558 species, and there may be records in the literature that have eluded the author’s attention. This checklist of Illinois species has been compiled from sources cited below. The initials in parentheses that follow each species name and authorship in the list denote the paper or other source in which the species was reported. Locality data, dates of collection, and other information about each species can be obtained by referring to the indicated sources. (AAS) American Arachnological Society Spider Species List for North America, published on the web site of the American Arachnological Society: http://americanarachnology.org/AAS_information.html (B&N) Beatty, J. A. and J. M. Nelson. 1979. Additions to the Checklist of Illinois Spiders. The Great Lakes Entomologist 12:49-56. (JB) Beatty, J. A. 2002. The Spiders of Illinois and Indiana, their Geolographical Affinities, and an Annotated Checklist. Proc. Ind. Acad. Sci. 1:77-94. (BC) Cutler, B. 1987. A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae: Salticidae). J. Arachnol.15:321-348. (G&P) Gertsch, W. J. And N. I. Platnick. 1980. A Revision of the American Spiders of the Family Atypidae (Araneae, Mygalomorphae). Amer. Mus. Novitates 2704:1-39. (BK) Kaston, B. J. 1955. Check List of Illinois Spiders. Trans. Ill. State Acad. Sci. 47: 165- 172. (SK) Kendeigh, S. C. 1979. Invertebrate Populations of the Deciduous Forest Fluctuations and Relations to Weather. Illinois Biol. Monog. 50:1-107.
    [Show full text]