Rocket and Spacecraft Propulsion Principles, Practice and New Developments (Third Edition)

Total Page:16

File Type:pdf, Size:1020Kb

Rocket and Spacecraft Propulsion Principles, Practice and New Developments (Third Edition) Rocket and Spacecraft Propulsion Principles, Practice and New Developments (Third Edition) Martin J. L. Turner Rocket and Spacecraft Propulsion Principles, Practice and New Developments (Third Edition) Published in association with Praxis Publishing Chichester, UK Professor Martin J. L. Turner, C.B.E., F.R.A.S. Department of Physics and Astronomy University of Leicester Leicester UK SPRINGER–PRAXIS BOOKS IN ASTRONAUTICAL ENGINEERING SUBJECT ADVISORY EDITOR: John Mason, B.Sc., M.Sc., Ph.D. ISBN 978-3-540-69202-7 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2008933223 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2009 First edition published 2001 Second edition published 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project management: Originator Publishing Services, Gt Yarmouth, Norfolk, UK Printed on acid-free paper Contents Preface to the third edition ................................ xi Preface to the second edition ............................... xiii Preface to the first edition................................. xv Acknowledgements...................................... xvii List of figures ........................................ xix List of tables ......................................... xxiii List of colour plates..................................... xxv 1 History and principles of rocket propulsion ................... 1 1.1 The development of the rocket....................... 1 1.1.1 The Russian space programme ................. 6 1.1.2 Other national programmes.................... 6 1.1.3 The United States space programme .............. 8 1.1.4 Commentary . .......................... 13 1.2 Newton’s third law and the rocket equation .............. 14 1.2.1 Tsiolkovsky’s rocket equation .................. 14 1.3 Orbits and spaceflight. .......................... 17 1.3.1 Orbits.................................. 18 1.4 Multistage rockets ............................... 25 1.4.1 Optimising a multistage rocket ................. 28 1.4.2 Optimising the rocket engines .................. 30 1.4.3 Strap-on boosters .......................... 32 1.5 Access to space ................................. 34 vi Contents 2 The thermal rocket engine .............................. 37 2.1 The basic configuration ........................... 37 2.2 The development of thrust and the effect of the atmosphere . 39 2.2.1 Optimising the exhaust nozzle .................. 43 2.3 The thermodynamics of the rocket engine . .............. 44 2.3.1 Exhaust velocity ........................... 46 2.3.2 Mass flow rate ............................ 48 2.4 The thermodynamic thrust equation ................... 53 2.4.1 The thrust coefficient and the characteristic velocity.... 54 2.5 Computing rocket engine performance .................. 58 2.5.1 Specific impulse ........................... 59 2.5.2 Example calculations ........................ 60 2.6 Worked Example.... 62 2.7 Summary ..................................... 65 3 Liquid propellant rocket engines .......................... 67 3.1 The basic configuration of the liquid propellant engine ....... 67 3.2 The combustion chamber and nozzle ................... 68 3.2.1 Injection ................................ 69 3.2.2 Ignition................................. 70 3.2.3 Combustion instability ....................... 73 3.2.4 Thrust vector control........................ 78 3.3 Liquid propellant distribution systems .................. 81 3.3.1 Cavitation ............................... 83 3.3.2 Pogo .................................. 84 3.4 Cooling of liquid-fuelled rocket engines . .............. 85 3.5 Examples of rocket engine propellant flow . .............. 86 3.5.1 The Aestus engine on Ariane 5 . 87 3.5.2 The Ariane Viking engines .................... 88 3.5.3 The Ariane HM7 B engine .................... 90 3.5.4 The Vinci cryogenic upper-stage engine for Ariane 5 91 3.5.5 The Ariane 5 Vulcain cryogenic engine ............ 92 3.5.6 The Space Shuttle main engine . .............. 93 3.5.7 The RS 68 engine .......................... 96 3.5.8 The RL 10 engine.......................... 96 3.6 Combustion and the choice of propellants . .............. 98 3.6.1 Combustion temperature ..................... 99 3.6.2 Molecular weight .......................... 100 3.6.3 Propellant physical properties .................. 101 3.7 The performance of liquid-fuelled rocket engines ........... 103 3.7.1 Liquid oxygen–liquid hydrogen engines ............ 104 3.7.2 Liquid hydrocarbon–liquid oxygen engines .......... 104 3.7.3 Storable propellant engines .................... 106 Contents vii 4 Solid propellant rocket motors ........................... 109 4.1 Basic configuration .............................. 109 4.2 The properties and the design of solid motors............. 111 4.3 Propellant composition . .......................... 112 4.3.1 Additives................................ 114 4.3.2 Toxic exhaust. .......................... 115 4.3.3 Thrust stability . .......................... 115 4.3.4 Thrust profile and grain shape.................. 116 4.4 Integrity of the combustion chamber ................... 118 4.4.1 Thermal protection ......................... 119 4.4.2 Inter-section joints ......................... 120 4.4.3 Nozzle thermal protection..................... 122 4.5 Ignition ...................................... 122 4.6 Thrust vector control . .......................... 123 4.7 Two modern solid boosters ......................... 123 4.7.1 The Space Shuttle SRB ...................... 123 4.7.2 The Ariane MPS .......................... 125 4.8 Hybrid rocket motors. .......................... 126 4.8.1 Hybrid motor history ....................... 127 4.8.2 The basic configuration of a hybrid motor.......... 128 4.8.3 Propellants and ignition ...................... 128 4.8.4 Combustion .............................. 130 4.8.5 Grain cross-section ......................... 131 4.8.6 Propulsive efficiency ........................ 132 4.8.7 Increasing the thrust ........................ 133 5 Launch vehicle dynamics ............................... 135 5.1 More on the rocket equation ........................ 135 5.1.1 Range in the absence of gravity................. 137 5.2 Vertical motion in the Earth’s gravitational field ........... 140 5.2.1 Vehicle velocity . .......................... 140 5.2.2 Range.................................. 143 5.3 Inclined motion in a gravitational field ................. 144 5.3.1 Constant pitch angle ........................ 144 5.3.2 The flight path at constant pitch angle ............ 146 5.4 Motion in the atmosphere.......................... 148 5.4.1 Aerodynamic forces......................... 149 5.4.2 Dynamic pressure .......................... 150 5.5 The gravity turn ................................ 151 5.6 Basic launch dynamics . .......................... 153 5.6.1 Airless bodies. .......................... 154 5.7 Typical Earth-launch trajectories ..................... 155 5.7.1 The vertical segment of the trajectory ............. 156 5.7.2 The gravity turn or transition trajectory ........... 156 5.7.3 Constant pitch or the vacuum trajectory ........... 157 viii Contents 5.7.4 Orbital injection ........................... 157 5.8 Actual launch vehicle trajectories ..................... 159 5.8.1 The Mu-3-S-II launcher ...................... 159 5.8.2 Ariane4.... 162 5.8.3 Pegasus................................. 163 6 Electric propulsion ................................... 165 6.1 The importance of exhaust velocity .................... 165 6.2 Revived interest in electric propulsion .................. 167 6.3 Principles of electric propulsion ...................... 167 6.3.1 Electric vehicle performance ................... 168 6.3.2 Vehicle velocity as a function of exhaust velocity ..... 169 6.3.3 Vehicle velocity and structural/propellant mass ....... 170 6.4 Electric thrusters ................................ 171 6.4.1 Electrothermal thrusters ...................... 172 6.4.2 Arc-jet thrusters ........................... 175 6.5 Electromagnetic thrusters .......................... 177 6.5.1 Ion propulsion ............................ 178 6.5.2 The space charge limit ....................... 180 6.5.3 Electric field and potential .................... 182 6.5.4 Ion thrust ............................... 183 6.5.5 Propellant choice .......................... 184 6.5.6 Deceleration grid .......................... 186 6.5.7 Electrical efficiency ......................... 186 6.6 Plasma thrusters ................................ 189 6.6.1 Hall effect thrusters......................... 191 6.6.2 Radiofrequency thrusters ..................... 197 6.7 Low-power electric thrusters ........................ 199
Recommended publications
  • Propulsion Options for the Global Precipitation Measurement Core Satellite
    PROPULSION OPTIONS FOR THE GLOBAL PRECIPITATION MEASUREMENT CORE SATELLITE Eric H. Cardiff*, Gary T. Davist, and David C. FoltaS NASA Goddard Space Flight Center Greenbelt, MD 2077 1 Abstract This study was conducted to evaluate several propulsion system options for the Global Precipitation Measurement (GPM) core satellite. Orbital simulations showed clear benefits for the scientific data to be obtained at a constant orbital altitude rather than with a decayheboost approach. An orbital analysis estimated the drag force on the satellite will be 1 to 12 mN during the five-year mission. Four electric propulsion systems were identified that are able to compensate for these drag forces and maintain a circular orbit. The four systems were the UK-lO/TS and the NASA 8 cm ion engines, and the ESA RMT and RITlO EVO radio-frequency ion engines. The mass, cost, and power requirements were examined for these four systems. The systems were also evaluated for the transfer time from the initial orbit of 400 x 650 km altitude orbit to a circular 400 km orbit. The transfer times were excessive, and as a consequence a “dual” system concept (with a hydrazine monopropellant system for the orbit transfer and electric propulsion for drag compensation) was examined. Clear mass benefits were obtained with the “dual” system, but cost remains an issue because of the larger power system required for the electric propulsion system. An electrodynamic tether was also evaluated in this trade study. Introduction The propulsion system is required to perform two The Global Precipitation Measurement (GPM) primary functions. The first is to transfer the mission will be launched in late 2008 to measure satellite from the launch insertion orbit to the final the amount and type of precipitation around the circular orbit.
    [Show full text]
  • Space Launch System (Sls) Motors
    Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • On-Orbit Propulsion System Performance of ISS Visiting Vehicles
    On-Orbit Propulsion System Performance of ISS Visiting Vehicles Mary Regina M. Martin*, Robert A. Swanson†, and Ulhas P. Kamath‡ The Boeing Company, Houston, TX 77059 and Francisco J. Hernandez§ and Victor Spencer** NASA Lyndon B. Johnson Space Center, Houston, TX 77058 The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS. Nomenclature ΔT = change in temperature in °C ΔV = change in velocity in m/s F = thrust in kgf (1 kgf = 9.807 N) Isp = specific impulse in seconds K1 = constant derived from the acceptance test data for each type of thruster K2 = constant derived from the acceptance test data for each type of thruster m = mass of propellant consumed in kg 2 Pavg = average pressure of all tanks feeding a thruster in kg/cm Ton = total on-time in seconds I.
    [Show full text]
  • Mscthesis Joseangelgutier ... Humada.Pdf
    Targeting a Mars science orbit from Earth using Dual Chemical-Electric Propulsion and Ballistic Capture Jose Angel Gutierrez Ahumada Delft University of Technology TARGETING A MARS SCIENCE ORBIT FROM EARTH USING DUAL CHEMICAL-ELECTRIC PROPULSION AND BALLISTIC CAPTURE by Jose Angel Gutierrez Ahumada MSc Thesis in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Wednesday May 8, 2019. Supervisor: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Dr. Ryan Russell, The University of Texas at Austin Thesis committee: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Prof. dr. ir. Pieter N.A.M. Visser, TU Delft ir. Ron Noomen, TU Delft Dr. Angelo Cervone, TU Delft This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover picture adapted from https://steemitimages.com/p/2gs...QbQvi EXECUTIVE SUMMARY Ballistic capture is a relatively novel concept in interplanetary mission design with the potential to make Mars and other targets in the Solar System more accessible. A complete end-to-end interplanetary mission from an Earth-bound orbit to a stable science orbit around Mars (in this case, an areostationary orbit) has been conducted using this concept. Sets of initial conditions leading to ballistic capture are generated for different epochs. The influence of the dynamical model on the capture is also explored briefly. Specific capture trajectories are then selected based on a study of their stabilization into an areostationary orbit.
    [Show full text]
  • Cave-73-02-Fullr.Pdf
    EDITORIAL Production Changes for Future Publication of the Journal of Cave and Karst Studies SCOTT ENGEL Production Editor The Journal of Cave and Karst Studies has experienced December 2011 issue, printed copies of the Journal will be budget shortfalls for the last several years for a multitude automatically distributed to paid subscribers, institutions, of reasons that include, but are not limited to, increased and only those NSS members with active Life and cost of paper, increased costs of shipping through the Sustaining level memberships. The remainder of the NSS United State Postal Service, increased submissions, and membership will be able to view the Journal electronically stagnant funding from the National Speleological Society online but will not automatically receive a printed copy. Full (NSS). The cost to produce the Journal has increased 5 to content of each issue of the Journal will be available for 20 percent per year for the last five years, yet the budget for viewing and downloading in PDF format at no cost from the the Journal has remained unchanged. To offset rising costs, Journal website www.caves.org/pub/journal. the Journal has implemented numerous changes over recent Anyone wishing to receive a printed copy of the Journal years to streamline the production and printing process. will be able to subscribe for an additional cost separate However, the increasing production costs, combined with from normal NSS dues. The cost and subscription process the increasing rate of good-quality submissions, has were still being determined at the time of this printing. resulted in the number of accepted manuscripts by the Once determined, the subscription information will be Journal growing faster than the acquisition of funding to posted on the Journal website.
    [Show full text]
  • Spacecraft Propulsion
    SPACECRAFT PROPULSION WITH THRUST AND PRECISION INTO SPACE SPACECRAFT PROPULSION THRUST AND PRECISION INTO SPACE ArianeGroup is a market leader in spacecraft propulsion systems and equipment. Since over 50 years, customers worldwide benefit from a competitive portfolio of high quality products and services. We cover the complete range of products and services related to orbital propulsion, from chemical monopropellant systems for smaller satellites to chemical bipropellant systems for larger platforms and completed with the electric propulsion portfolio based on the RIT technology. At ArianeGroup, customers have a single point of contact for the complete propulsion system at all phases of the value chain. From system design up to after-launch services. All key equipment of ArianeGroup propulsion systems (thrusters, propellant tanks and fluidic equipment) are produced in-house. 2 ALL ABOUT PRECISION With our orbital propulsion thrusters and engines our customers can be ensured that their mission requirements related to propulsion will be fulfilled with accurate precision. Our biggest orbital propulsion thruster, the 400N apogee engine, has placed hundreds of satellites in its final orbit With micro precision the RIT µX thruster brings space missions to the exact orbit 2 3 SPACECRAFT PROPULSION ELECTRIC PROPULSION Radio frequency ion propulsion for orbit raising, station keeping and deep space missions ArianeGroup’s electric space propulsion expertise is based on the space proven Radio Frequency Ion Technology (RIT). Within this field, we produce complete propulsion systems, modules, thrusters and related components. This technology features numerous advantages like high specific impulse therefore maximum propellant saving. Low system complexity is another strength of the RIT Technology.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • Humanity and Space
    10/17/2012!! !!!!!! Project Number: MH-1207 Humanity and Space An Interactive Qualifying Project Submitted to WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment for the Degree of Bachelor of Science by: Matthew Beck Jillian Chalke Matthew Chase Julia Rugo Professor Mayer H. Humi, Project Advisor Abstract Our IQP investigates the possible functionality of another celestial body as an alternate home for mankind. This project explores the necessary technological advances for moving forward into the future of space travel and human development on the Moon and Mars. Mars is the optimal candidate for future human colonization and a stepping stone towards humanity’s expansion into outer space. Our group concluded space travel and interplanetary exploration is possible, however international political cooperation and stability is necessary for such accomplishments. 2 Executive Summary This report provides insight into extraterrestrial exploration and colonization with regards to technology and human biology. Multiple locations have been taken into consideration for potential development, with such qualifying specifications as resources, atmospheric conditions, hazards, and the environment. Methods of analysis include essential research through online media and library resources, an interview with NASA about the upcoming Curiosity mission to Mars, and the assessment of data through mathematical equations. Our findings concerning the human aspect of space exploration state that humanity is not yet ready politically and will not be able to biologically withstand the hazards of long-term space travel. Additionally, in the field of robotics, we have the necessary hardware to implement adequate operational systems yet humanity lacks the software to implement rudimentary Artificial Intelligence. Findings regarding the physics behind rocketry and space navigation have revealed that the science of spacecraft is well-established.
    [Show full text]
  • Performance of the NASA 30 Cm Ion Thruster
    https://ntrs.nasa.gov/search.jsp?R=19940020297 2020-06-16T16:39:35+00:00Z /-^- E-S^L^ NASA Technical Memorandum 106426 IEPC-93-108 Performance of the NASA 30 cm Ion Thruster Michael J. Patterson and Thomas W. Haag Lewis Research Center Cleveland, Ohio and Scot A. Hovan University of Dayton Dayton, Ohio Prepared for the 23rd International Electric Propulsion Conference cosponsored by the AIAA, AIDAA, DGLR, and BASS Seattle, Washington, September 13-16, 1993 NASA IEPC-93-108 Performance of the NASA 30 cm Ion Thruster Michael J. Patterson' and Thomas W. Haag' National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Scot A. Hovan Department of Mechanical Engineering University of Dayton Dayton, Ohio A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest, and is being proposed for use on the USAF/TRW Space Surveillance, Tracking and Autonomous Repositioning (SSTAR) platform to validate ion propulsion. The thruster incorporates innovations in design, materials, and fabrication techniques compared to those employed in conventional ion thrusters. Specific development efforts include thruster design optimizations, component life testing and validation, vibration testing, and performance characterizations. Under this test program, the ion thruster will be brought to engineering model development status. This paper discusses the performance and power throttling test data for the NASA 30 cm diameter xenon ion thruster over an input power envelope
    [Show full text]
  • A Tool for Preliminary Design of Rockets Aerospace Engineering
    A Tool for Preliminary Design of Rockets Diogo Marques Gaspar Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor : Professor Paulo Jorge Soares Gil Examination Committee Chairperson: Professor Fernando José Parracho Lau Supervisor: Professor Paulo Jorge Soares Gil Members of the Committee: Professor João Manuel Gonçalves de Sousa Oliveira July 2014 ii Dedicated to my Mother iii iv Acknowledgments To my supervisor Professor Paulo Gil for the opportunity to work on this interesting subject and for all his support and patience. To my family, in particular to my parents and brothers for all the support and affection since ever. To my friends: from IST for all the companionship in all this years and from Coimbra for the fellowship since I remember. To my teammates for all the victories and good moments. v vi Resumo A unica´ forma que a humanidade ate´ agora conseguiu encontrar para explorar o espac¸o e´ atraves´ do uso de rockets, vulgarmente conhecidos como foguetoes,˜ responsaveis´ por transportar cargas da Terra para o Espac¸o. O principal objectivo no design de rockets e´ diminuir o peso na descolagem e maximizar o payload ratio i.e. aumentar a capacidade de carga util´ ao seu alcance. A latitude e o local de lanc¸amento, a orbita´ desejada, as caracter´ısticas de propulsao˜ e estruturais sao˜ constrangimentos ao projecto do foguetao.˜ As trajectorias´ dos foguetoes˜ estao˜ permanentemente a ser optimizadas, devido a necessidade de aumento da carga util´ transportada e reduc¸ao˜ do combust´ıvel consumido. E´ um processo utilizado nas fases iniciais do design de uma missao,˜ que afecta partes cruciais do planeamento, desde a concepc¸ao˜ do ve´ıculo ate´ aos seus objectivos globais.
    [Show full text]
  • Launch Vehicle Optimization
    Launch vehicle optimization 1.Orbital Mechanics for engineering students Chapter – 11: Rocket vehicle dynamics 2. Space Flight Dynamics By William E Wiesel Chapter 7 – Rocket Performance Restricted staging in field-free space No gravity and no aerodynamics Let gross mass of a launch vehicle m0 = empty mass mE + propellant mass mp + payload mass mPL Empty mass mE = mass of structure + mass of fuel tank and related system + mass of control system Let us divide the above by m0 We can write as structural fraction , πE = mE / m0 Propellant fraction, πp =mp / m0 payload fraction, πPL = mPL / m0 Alternately we can define Payload ratio Structural ratio Mass ratio Assuming all the propellant Is consumed λ, ε and n are not independent From we can write as From we can write as Substituting and in We get Given any two of the ratios λ, ε and n, we can obtain the third Velocity at burn out is For a given empty mass, the greatest possible Δv occurs when the payload is zero. To maximize the amount of payload while keeping the structural weight to a minimum. Mass of load-bearing structure, rocket motors, pumps, piping, etc., cannot be made arbitrarily small. Current materials technology places a lower limit on ε of about 0.1. Performance of multistage rocket Restricted staging - all stages are similar Each stage has the same specific impulse Isp same structural ratio ε same payload ratio λ. Hence mass ratios n are identical Final burnout speed vbo for a given payload mass mPL Overall payload fraction m0 is the total mass of the tandem-stacked vehicle.
    [Show full text]