Speech Enhancement Using Convolutional Denoising Auto-Encoder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10S Johnson-Nyquist Noise Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: January 02, 2011)
Chapter 10S Johnson-Nyquist noise Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: January 02, 2011) Johnson noise Johnson-Nyquist theorem Boltzmann constant Parseval relation Correlation function Spectral density Wiener-Khinchin (or Khintchine) Flicker noise Shot noise Poisson distribution Brownian motion Fluctuation-dissipation theorem Langevin function ___________________________________________________________________________ John Bertrand "Bert" Johnson (October 2, 1887–November 27, 1970) was a Swedish-born American electrical engineer and physicist. He first explained in detail a fundamental source of random interference with information traveling on wires. In 1928, while at Bell Telephone Laboratories he published the journal paper "Thermal Agitation of Electricity in Conductors". In telecommunication or other systems, thermal noise (or Johnson noise) is the noise generated by thermal agitation of electrons in a conductor. Johnson's papers showed a statistical fluctuation of electric charge occur in all electrical conductors, producing random variation of potential between the conductor ends (such as in vacuum tube amplifiers and thermocouples). Thermal noise power, per hertz, is equal throughout the frequency spectrum. Johnson deduced that thermal noise is intrinsic to all resistors and is not a sign of poor design or manufacture, although resistors may also have excess noise. http://en.wikipedia.org/wiki/John_B._Johnson 1 ____________________________________________________________________________ Harry Nyquist (February 7, 1889 – April 4, 1976) was an important contributor to information theory. http://en.wikipedia.org/wiki/Harry_Nyquist ___________________________________________________________________________ 10S.1 Histrory In 1926, experimental physicist John Johnson working in the physics division at Bell Labs was researching noise in electronic circuits. He discovered random fluctuations in the voltages across electrical resistors, whose power was proportional to temperature. -
Arxiv:2003.13216V1 [Cs.CV] 30 Mar 2020
Learning to Learn Single Domain Generalization Fengchun Qiao Long Zhao Xi Peng University of Delaware Rutgers University University of Delaware [email protected] [email protected] [email protected] Abstract : Source domain(s) <latexit sha1_base64="glUSn7xz2m1yKGYjqzzX12DA3tk=">AAAB8nicjVDLSsNAFL3xWeur6tLNYBFclaQKdllw47KifUAaymQ6aYdOJmHmRiihn+HGhSJu/Rp3/o2TtgsVBQ8MHM65l3vmhKkUBl33w1lZXVvf2Cxtlbd3dvf2KweHHZNkmvE2S2SieyE1XArF2yhQ8l6qOY1Dybvh5Krwu/dcG5GoO5ymPIjpSIlIMIpW8vsxxTGjMr+dDSpVr+bOQf4mVViiNai894cJy2KukElqjO+5KQY51SiY5LNyPzM8pWxCR9y3VNGYmyCfR56RU6sMSZRo+xSSufp1I6exMdM4tJNFRPPTK8TfPD/DqBHkQqUZcsUWh6JMEkxI8X8yFJozlFNLKNPCZiVsTDVlaFsq/6+ETr3mndfqNxfVZmNZRwmO4QTOwINLaMI1tKANDBJ4gCd4dtB5dF6c18XoirPcOYJvcN4+AY5ZkWY=</latexit> <latexit sha1_base64="9X8JvFzvWSXuFK0x/Pe60//G3E4=">AAACD3icbVDLSsNAFJ3UV62vqks3g0Wpm5LW4mtVcOOyUvuANpTJZNIOnUzCzI1YQv/Ajb/ixoUibt26829M2iBqPTBwOOfeO/ceOxBcg2l+GpmFxaXllexqbm19Y3Mrv73T0n6oKGtSX/iqYxPNBJesCRwE6wSKEc8WrG2PLhO/fcuU5r68gXHALI8MJHc5JRBL/fxhzyMwpEREjQnuAbuD6AI3ptOx43uEy6I+muT6+YJZMqfA86SckgJKUe/nP3qOT0OPSaCCaN0tmwFYEVHAqWCTXC/ULCB0RAasG1NJPKataHrPBB/EioNdX8VPAp6qPzsi4mk99uy4Mtle//US8T+vG4J7ZkVcBiEwSWcfuaHA4OMkHOxwxSiIcUwIVTzeFdMhUYRCHOEshPMEJ98nz5NWpVQ+LlWvq4VaJY0ji/bQPiqiMjpFNXSF6qiJKLpHj+gZvRgPxpPxarzNSjNG2rOLfsF4/wJA4Zw6</latexit> S S : Target domain(s) <latexit sha1_base64="ssITTP/Vrn2uchq9aDxvcfruPQc=">AAACD3icbVDLSgNBEJz1bXxFPXoZDEq8hI2Kr5PgxWOEJAaSEHonnWTI7Owy0yuGJX/gxV/x4kERr169+TfuJkF8FTQUVd10d3mhkpZc98OZmp6ZnZtfWMwsLa+srmXXN6o2iIzAighUYGoeWFRSY4UkKayFBsH3FF57/YvUv75BY2WgyzQIselDV8uOFECJ1MruNnygngAVl4e8QXhL8Rkvg+ki8Xbgg9R5uzfMtLI5t+COwP+S4oTk2ASlVva90Q5E5KMmocDaetENqRmDISkUDjONyGIIog9drCdUg4+2GY/+GfKdRGnzTmCS0sRH6veJGHxrB76XdKbX299eKv7n1SPqnDRjqcOIUIvxok6kOAU8DYe3pUFBapAQEEYmt3LRAwOCkgjHIZymOPp6+S+p7heKB4XDq8Pc+f4kjgW2xbZZnhXZMTtnl6zEKkywO/bAntizc+88Oi/O67h1ypnMbLIfcN4+ATKRnDE=</latexit> -
A Mathematical and Physical Analysis of Circuit Jitter with Application to Cryptographic Random Bit Generation
WJM-6500 BS2-0501 A Mathematical and Physical Analysis of Circuit Jitter with Application to Cryptographic Random Bit Generation A Major Qualifying Project Report: submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by _____________________________ Wayne R. Coppock _____________________________ Colin R. Philbrook Submitted April 28, 2005 1. Random Number Generator Approved:________________________ Professor William J. Martin 2. Cryptography ________________________ 3. Jitter Professor Berk Sunar 1 Abstract In this paper analysis of jitter is conducted to determine its suitability for use as an entropy source for a true random number generator. Efforts are taken to isolate and quantify jitter in ring oscillator circuits and to understand its relationship to design specifications. The accumulation of jitter via various methods is also investigated to determine whether there is an optimal accumulation technique for sampling the uncertainty of jitter events. Mathematical techniques are used to analyze the accumulation process and an attempt at modeling a signal with jitter is made. The physical properties responsible for the noise that causes jitter are also briefly investigated. 2 Acknowledgements We would like to thank our faculty advisors and our mentors at GD, without whom this project would not have been possible. Our advisors, Professor Bill martin and Professor Berk Sunar, were indispensable in keeping us focused on the tasks ahead as well as for providing background to help us explore new questions as they arose. Our mentors at GD were also key to the project’s success, and we owe them much for this. -
Improving Speech Quality for Hearing Aid Applications Based on Wiener Filter and Composite of Deep Denoising Autoencoders
signals Article Improving Speech Quality for Hearing Aid Applications Based on Wiener Filter and Composite of Deep Denoising Autoencoders Raghad Yaseen Lazim 1,2 , Zhu Yun 1,2 and Xiaojun Wu 1,2,* 1 Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710062, China; [email protected] (R.Y.L.); [email protected] (Z.Y.) 2 School of Computer Science, Shaanxi Normal University, No.620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China * Correspondence: [email protected] Received: 10 July 2020; Accepted: 1 September 2020; Published: 21 October 2020 Abstract: In hearing aid devices, speech enhancement techniques are a critical component to enable users with hearing loss to attain improved speech quality under noisy conditions. Recently, the deep denoising autoencoder (DDAE) was adopted successfully for recovering the desired speech from noisy observations. However, a single DDAE cannot extract contextual information sufficiently due to the poor generalization in an unknown signal-to-noise ratio (SNR), the local minima, and the fact that the enhanced output shows some residual noise and some level of discontinuity. In this paper, we propose a hybrid approach for hearing aid applications based on two stages: (1) the Wiener filter, which attenuates the noise component and generates a clean speech signal; (2) a composite of three DDAEs with different window lengths, each of which is specialized for a specific enhancement task. Two typical high-frequency hearing loss audiograms were used to test the performance of the approach: Audiogram 1 = (0, 0, 0, 60, 80, 90) and Audiogram 2 = (0, 15, 30, 60, 80, 85). -
Next Topic: NOISE
ECE145A/ECE218A Performance Limitations of Amplifiers 1. Distortion in Nonlinear Systems The upper limit of useful operation is limited by distortion. All analog systems and components of systems (amplifiers and mixers for example) become nonlinear when driven at large signal levels. The nonlinearity distorts the desired signal. This distortion exhibits itself in several ways: 1. Gain compression or expansion (sometimes called AM – AM distortion) 2. Phase distortion (sometimes called AM – PM distortion) 3. Unwanted frequencies (spurious outputs or spurs) in the output spectrum. For a single input, this appears at harmonic frequencies, creating harmonic distortion or HD. With multiple input signals, in-band distortion is created, called intermodulation distortion or IMD. When these spurs interfere with the desired signal, the S/N ratio or SINAD (Signal to noise plus distortion ratio) is degraded. Gain Compression. The nonlinear transfer characteristic of the component shows up in the grossest sense when the gain is no longer constant with input power. That is, if Pout is no longer linearly related to Pin, then the device is clearly nonlinear and distortion can be expected. Pout Pin P1dB, the input power required to compress the gain by 1 dB, is often used as a simple to measure index of gain compression. An amplifier with 1 dB of gain compression will generate severe distortion. Distortion generation in amplifiers can be understood by modeling the amplifier’s transfer characteristic with a simple power series function: 3 VaVaVout=−13 in in Of course, in a real amplifier, there may be terms of all orders present, but this simple cubic nonlinearity is easy to visualize. -
Dithering and Quantization of Audio and Image
Dithering and Quantization of audio and image Maciej Lipiński - Ext 06135 1. Introduction This project is going to focus on issue of dithering. The main aim of assignment was to develop a program to quantize images and audio signals, which should add noise and to measure mean square errors, comparing the quality of the quantized images with and without noise. The program realizes fallowing: - quantize an image or audio signal using n levels (defined by the user); - measure the MSE (Mean Square Error) between the original and the quantized signals; - add uniform noise in [-d/2,d/2], where d is the quantization step size, using n levels; - quantify the signal (image or audio) after adding the noise, using n levels (user defined); - measure the MSE by comparing the noise-quantized signal with the original; - compare results. The program shows graphic result, presenting original image/audio, quantized image/audio and quantized with dither image/audio. It calculates and displays the values of MSE – mean square error. 2. DITHERING Dither is a form of noise, “erroneous” signal or data which is intentionally added to sample data for the purpose of minimizing quantization error. It is utilized in many different fields where digital processing is used, such as digital audio and images. The quantization and re-quantization of digital data yields error. If that error is repeating and correlated to the signal, the error that results is repeating. In some fields, especially where the receptor is sensitive to such artifacts, cyclical errors yield undesirable artifacts. In these fields dither is helpful to result in less determinable distortions. -
Pink Noise Generator
PINK NOISE GENERATOR K4301 Add a spectrum analyser with a microphone and check your audio system performance. H4301IP-1 VELLEMAN NV Legen Heirweg 33 9890 Gavere Belgium Europe www.velleman.be www.velleman-kit.com Features & Specifications To analyse the acoustic properties of a room (usually a living- room), a good pink noise generator together with a spectrum analyser is indispensable. Moreover you need a microphone with as linear a frequency characteristic as possible (from 20 to 20000Hz.). If, in addition, you dispose of an equaliser, then you can not only check but also correct reproduction. Features: Random digital noise. 33 bit shift register. Clock frequency adjustable between 30KHz and 100KHz. Pink noise filter: -3 dB per octave (20 .. 20000Hz.). Easily adaptable to produce "white noise". Specifications: Output voltage: 150mV RMS./ clock frequency 40KHz. Output impedance: 1K ohm. Power supply: 9 to 12VAC, or 12 to 15VDC / 5mA. 3 Assembly hints 1. Assembly (Skipping this can lead to troubles ! ) Ok, so we have your attention. These hints will help you to make this project successful. Read them carefully. 1.1 Make sure you have the right tools: A good quality soldering iron (25-40W) with a small tip. Wipe it often on a wet sponge or cloth, to keep it clean; then apply solder to the tip, to give it a wet look. This is called ‘thinning’ and will protect the tip, and enables you to make good connections. When solder rolls off the tip, it needs cleaning. Thin raisin-core solder. Do not use any flux or grease. A diagonal cutter to trim excess wires. -
Thermal-Noise.Pdf
Thermal Noise Introduction One might naively believe that if all sources of electrical power are removed from a circuit that there will be no voltage across any of the components, a resistor for example. On average this is correct but a close look at the rms voltage would reveal that a "noise" voltage is present. This intrinsic noise is due to thermal fluctuations and can be calculated as may be done in your second year thermal physics course! The main goal of this experiment is to measure and characterize this noise: Johnson noise. In order to measure the intrinsic noise of a component one must first reduce the extrinsic sources of noise, i.e. interference. You have probably noticed that if you touch the input lead to an oscilloscope a large signal appears. Try this now and characterize the signal you see. Note that you are acting as an antenna! Make sure you look at both long time scales, say 10 ms, and shorter time scales, say 1 s. What are the likely sources of the signals you see? You may recall seeing this before in the First Year Laboratory. This interference is characterized by two features. First, the noise voltage is characterized by a spectrum, i.e. the noise voltage Vn ( f ) is a function of frequency. 2 Since noise usually has a time average of zero, the power spectrum Vn ( f ) is specified in each frequency interval df . Second, the measuring instrument is also characterized by a spectral response or bandwidth. In our case the bandwidth of the oscilloscope is from fL =0 (when input is DC coupled) to an upper frequency fH usually noted on the scope (beware of bandwidth limiting switches). -
1Õf Noise from Nonlinear Stochastic Differential Equations
PHYSICAL REVIEW E 81, 031105 ͑2010͒ 1Õf noise from nonlinear stochastic differential equations J. Ruseckas* and B. Kaulakys Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania ͑Received 20 October 2009; published 8 March 2010͒ We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/ f noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/ f noise, and provides further insights into the origin of 1/ f noise. DOI: 10.1103/PhysRevE.81.031105 PACS number͑s͒: 05.40.Ϫa, 72.70.ϩm, 89.75.Da I. INTRODUCTION signals with 1/ f noise were obtained in Refs. ͓29,30͔͑see ͓ ͔͒ Power-law distributions of spectra of signals, including also recent papers 5,31 , starting from the point process / ͓ ͔ 1/ f noise ͑also known as 1/ f fluctuations, flicker noise, and model of 1 f noise 27,32–39 . pink noise͒, as well as scaling behavior in general, are ubiq- The purpose of this article is to derive the behavior of the uitous in physics and in many other fields, including natural power spectral density directly from the SDE, without using phenomena, human activities, traffics in computer networks, the point process model. -
Noise Is Widespread
NoiseNoise A definition (not mine) Electrical Noise S. Oberholzer and E. Bieri (Basel) T. Kontos and C. Hoffmann (Basel) A. Hansen and B-R Choi (Lund and Basel) ¾ Electrical noise is defined as any undesirable electrical energy (?) T. Akazaki and H. Takayanagi (NTT) E.V. Sukhorukov and D. Loss (Basel) C. Beenakker (Leiden) and M. Büttiker (Geneva) T. Heinzel and K. Ensslin (ETHZ) M. Henny, T. Hoss, C. Strunk (Basel) H. Birk (Philips Research and Basel) Effect of noise on a signal. (a) Without noise (b) With noise ¾ we like it though (even have a whole conference on it) National Center on Nanoscience Swiss National Science Foundation 1 2 Noise may have been added to by ... Introduction: Noise is widespread Noise (audio, sound, HiFi, encodimg, MPEG) Electrical Noise Noise (industrial, pollution) Noise (in electronic circuits) Noise (images, video, encoding) Noise (environment, pollution) it may be in the “source” signal from the start Noise (radio) it may have been introduced by the electronics Noise (economic => theory of pricing with fluctuating it may have been added to by the envirnoment source terms) it may have been generated in your computer Noise (astronomy, big-bang, cosmic background) Noise figure Shot noise Thermal noise for the latter, e.g. sampling noise Quantum noise Neuronal noise Standard quantum limit and more ... 3 4 Introduction: Noise is widespread Introduction (Wikipedia) Noise (audio, sound, HiFi, encodimg, MPEG) Electronic Noise (from Wikipedia) Noise (industrial, pollution) Noise (in electronic circuits) Noise (images, video, encoding) Electronic noise exists in any electronic circuit as a result of random variations in current or voltage caused by the random movement of the Noise (environment, pollution) electrons carrying the current as they are jolted around by thermal energy.energy Noise (radio) The lower the temperature the lower is this thermal noise. -
Noise by the Nonlinear Stochastic Differential Equations
Modeling scaled processes and 1/f β noise by the nonlinear stochastic differential equations B Kaulakys and M Alaburda Institute of Theoretical Physics and Astronomy of Vilnius University, Goˇstauto 12, LT-01108 Vilnius, Lithuania E-mail: [email protected] Abstract. We present and analyze stochastic nonlinear differential equations generating signals with the power-law distributions of the signal intensity, 1/f β noise, power-law autocorrelations and second order structural (height-height correlation) functions. Analytical expressions for such characteristics are derived and the comparison with numerical calculations is presented. The numerical calculations reveal links between the proposed model and models where signals consist of bursts characterized by the power-law distributions of burst size, burst duration and the inter- burst time, as in a case of avalanches in self-organized critical (SOC) models and the extreme event return times in long-term memory processes. The presented approach may be useful for modeling the long-range scaled processes exhibiting 1/f noise and power-law distributions. Keywords: 1/f noise, stochastic processes, point processes, power-law distributions, nonlinear stochastic equations arXiv:1003.1155v1 [nlin.AO] 4 Mar 2010 Modeling scaled processes and 1/f β noise 2 1. Introduction The inverse power-law distributions, autocorrelations and spectra of the signals, including 1/f noise (also known as 1/f fluctuations, flicker noise and pink noise), as well as scaling behavior in general, are ubiquitous in physics and in many other fields, counting natural phenomena, spatial repartition of faults in geology, human activities such as traffic in computer networks and financial markets. -
The Power Spectral Density of Phase Noise and Jitter: Theory, Data Analysis, and Experimental Results by Gil Engel
AN-1067 APPLICATION NOTE One Technology Way • P. O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com The Power Spectral Density of Phase Noise and Jitter: Theory, Data Analysis, and Experimental Results by Gil Engel INTRODUCTION GENERAL DESCRIPTION Jitter on analog-to-digital and digital-to-analog converter sam- There are numerous techniques for generating clocks used in pling clocks presents a limit to the maximum signal-to-noise electronic equipment. Circuits include R-C feedback circuits, ratio that can be achieved (see Integrated Analog-to-Digital and timers, oscillators, and crystals and crystal oscillators. Depend- Digital-to-Analog Converters by van de Plassche in the References ing on circuit requirements, less expensive sources with higher section). In this application note, phase noise and jitter are defined. phase noise (jitter) may be acceptable. However, recent devices The power spectral density of phase noise and jitter is developed, demand better clock performance and, consequently, more time domain and frequency domain measurement techniques costly clock sources. Similar demands are placed on the spectral are described, limitations of laboratory equipment are explained, purity of signals sampled by converters, especially frequency and correction factors to these techniques are provided. The synthesizers used as sources in the testing of current higher theory presented is supported with experimental results applied performance converters. In the following section, definitions to a real world problem. of phase noise and jitter are presented. Then a mathematical derivation is developed relating phase noise and jitter to their frequency representation.