Color Hit-Or-Miss Transform (CMOMP)

Total Page:16

File Type:pdf, Size:1020Kb

Color Hit-Or-Miss Transform (CMOMP) 20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012 COLOR HIT-OR-MISS TRANSFORM (CMOMP ) Audrey Ledoux, Noel¨ Richard and Anne-Sophie Capelle-Laize´ University of Poitiers, XLIM-SIC JUR CNRS 7252, Poitiers, France Telephone: +33 (0)5 49 49 74 92 Fax: +33 (0)5 49 49 65 70 ABSTRACT 2. HIT-OR-MISS TRANSFORM Often, the mathematical morphology is reduced to the orde- The Hit-or-Miss Transform (HMT ) allows to find specific ring construction and the structuring elements are limited to shapes in images. It was initially developed for binary images flat shapes. In this paper, we propose a new method based on by Matheron and Serra [7]. The searched shapes are defined concept of convergence. Within this proposition, the defini- with a pair of disjoint Structuring Elements (SE) that frame tion of non-flat structuring element is now possible. By ex- it, one for the foreground shape and one for the background tending the mathematical morphology hit-or-miss transform shape. The mathematical expression of the HMT for an ima- to the color, we show that these formalisms are well adapted ge f and its structuring elements g = fg0; g00g is: for complex color images, as skin images for dermatological 0 c 00 purposes. We give and comment results on synthetic and real HMTg(f)(x) = (f b g )(x) \ (f b g )(x) (1) images. where f c is the complement of f, f c = fxjx2 = fg. Index Terms— color mathematical morphology, non-flat Several variations exists around the definition in grayscale structuring element, hit-or-miss [8, 9, 10, 11]. In the following we explain the Barat pro- posal [6], called MOMP (Multiple Objects Matching using Probing). The MOMP transform is an image surface pro- 1. INTRODUCTION bing with two SEs, one above the surface (g00) and the second below (g0). The mathematical expression of the MOMP is: The extension of Mathematical Morphology (MM) to color 00 r 0 images is not straightforward, due to the complexity of vec- MOMPg(f)(x) = (f ⊕g (−g ) )(x) − (f g g )(x)(2) torial data ordering. The abundance of color spaces [1] and possible color ordering methods [2] allow a near infinity of expressions for color MM. Some authors define a total order Table 1: Notations in multivariate values [3]. But none deals with the question of color Non-Flat Structuring Element (NF SE) that are used in f, Df Image function and his spatial domain of definition some morphological operations in grayscale functions or ima- SDf Color coordinates domain of definition from the f function ges (filtering [4], estimation of the fractal dimension [5] ...). x = (i; j) Spatial coordinates for a pixel x In this paper we propose a new color MM in the CIELAB f c, f r Complementary and reflectivity of the f function color space that permits the definition of non-flat structuring g,Dg Structuring Element function and his spatial domain element. We evaluate this new method using the color Hit-or- of definition g0, g00 Inferior and superior Structuring Element function Miss Transform (HMT ) to extract complex color structures for the MOMP Transform 0 00 in natural images, like skin images. hg0 ; hg00 Value of g and g function located at the spatial 0 The first part of this paper is a quick recall on the Hit- origin o: g (o) = hg0 Cx Color coordinates of the x pixel or-Miss Transform in binary and grayscale, with focus on the −−−! jCxCyj ∆ color distance between the Cx and Cy Barat’s proposal [6] (section 2). Then, we present our color E −−−! coordinates (CxCy vector norm) MM construction to obtain a total order allowing NF SE O+1, O−∞ Color convergence coordinates for the dilation writing (section 3). We explain how to solve questions about and the erosion a valid construction of color addition/subtraction. Finally, we ⊕b, b Dilation and erosion for binary images show results on synthetic images to evaluate the approach ⊕g, g Dilation and erosion for grey-level images ⊕c, c Dilation and erosion for color images interest for color images (section 4) and we apply and vali- +, − Addition and subtraction for color coordinates date this approach in our applicative context (section 5). c c © EURASIP, 2012 - ISSN 2076-1465 2248 based on distance ordering. If the first condition did not reach a unique coordinate, they use a classical lexicographic cons- truction. In addition, such approaches never define the re- quired complementary color in terms of perception or physic property. The basic order relation between two color coordinates is built according to the distance from the convergence color −∞ (a) SEs points. The convergence color points are O for the ero- (b) Probing of function sion and O+1 for the dilation. Then the relations for the erosion (5) and the dilation (6) between two colors, C and Fig. 1: Principle of the MOMP transform 1 C2, could be: −−−−−! −−−−−! −∞ −∞ where g(x)r = g(−x). The result value is the distance bet- C1 C2 , jC1O j ≤ jC2O j (5) −−−−−! −−−−−! +1 +1 ween both SE computed at the SE origin. The shape is found C1 C2 , jC1O j ≤ jC2O j (6) when the result is lower than δ (figure 1). This template construction with two different SE allows In equations (5) and (6), the vector norm j:j uses the per- to extract structures with some shape and/or of contrast varia- ceptual distance ∆E computed in CIELAB. In a previous tions and to be few sensitive to noise in the image. To extend work, we showed that the ∆E color distance is most accu- this construction to color, the definition of color NF SE must rate than the other formulations or expressions in other color spaces [17]. The (5) and (6) expressions ensure the linear con- be defined. So, the next section is dedicated to our adapted vergence in a perceptual sense toward the color coordinates proposal for non-flat structuring elements construction. chosen. But they don’t construct a total order as required. The complete description and the validation of a total order 3. COLOR MATHEMATICAL MORPHOLOGY are not the subjects of this article, then they will not be de- tailed here. The definition of the maximum color coordinates The most widely used methods to define minimum (W) and on the image support Df and the structuring element support maximum (V) operations in color spaces are two equivalent Dg, for the dilation is: approaches, the lexicographic order or order based on prio- ( ) _ _ n β o rity expressed between color axis [12, 13, 14]. Usually, the ff(x)g = Cy;Cy = Cx (7) dilation and erosion operators by the structuring element g, in x2(Df \Dg ) 8Cx2SD9 ( ) n-dimensional space, can be expressed by (equations 3 and 4): _ n αo with SD9 = Cy : Cy = Cx ; _ 8Cx2SD8 (f ⊕c g)(i; j) = f(i + k; j + l) (3) ( −−−−−! −−−−−! ) (i;j)2Df ;(k;l)2Dg −∞ _ n −∞ o SD8 = Cy : jCyO j = jCxO j ; ^ (f c g)(i; j) = f(i + k; j + l) (4) 8Cx2SD7 (i;j)2D ;(k;l)2D ( ) f g −−−! _ n −−−! o SD7 = Cy : jCyCij = jCxCij ; where Df and Dg are respectively the spatial image support 8Cx2SD6 and the spatial structuring element support. ( −−−−−! −−−−−! ) +1 ^ n +1 o Due to the natural extension from grayscale domain, and and SD6 = Cy : jCyO j = jCxO j the choice of simple color order the morphological result con- 8x2(Df \Dg ) verges towards the black or white coordinates upon the iter- β α ation scheme. As for color images the convergence coordi- where Cx and Cx are respectively the second and the third CIELAB coordinates of Cx after a translation and a rotation nates could not be reduced to black or white, we propose a 1 new method, called ”Convergent Color Mathematical Mor- around the origin of the coordinates and Ci is the colour at phology” (CCMM), to associate color morphological oper- the SE coordinates origin. ators on this concept of convergence. Two convergence co- ordinates are defined according to the morphological objec- 3.1. Non-flat structuring element tives. For example, the color convergence coordinates could Since there is no valid definition of addition/subtraction in be associated to the color set statistics [15]. Then after an color domain, we define an adapted expression to the particu- infinity number of iterations the remaining color coordinates lar case of the CCMM. We impose that color pixel displace- of all pixels are the closest to the color convergence coordi- ment stills in relation with the notion of convergence. Color nate. Some authors have tried to construct a total ordering addition (+)/subtraction (−) induces the displacement of the scheme integrating distance functions and the notion of refe- c c rence colour [16]. But such approaches are not completely 1In order to the theoretical validation of the duality property. 2249 Fig. 3: 3D view of the template Fig. 2: Example of vector displacements with color addition + ( c ), the convergence color is the white and the divergence color is the black; (a) Original set of colors; (b) Non-flat struc- (a) Original image (b) Detection of red crosses turing element; (c) New set of colors; (d) Calculation of new coordinates of the set of colors pixels in the color space. The color vector displacement is defined by its magnitude and its orientation. Dealing with color representation, we associate the magnitude to specific color metric and we propose to use ∆E metric. The orienta- (c) Detection of green crosses (d) Detection of blue crosses tion depends on the morphological operation: with addition the displacement is oriented toward convergence color coor- Fig.
Recommended publications
  • Morphological Image Processing Introduction
    Morphological Image Processing Introduction • In many areas of knowledge Morphology deals with form and structure (biology, linguistics, social studies, etc) • Mathematical Morphology deals with set theory • Sets in Mathematical Morphology represents objects in an Image 2 Mathematic Morphology • Used to extract image components that are useful in the representation and description of region shape, such as – boundaries extraction – skeletons – convex hull (italian: inviluppo convesso) – morphological filtering – thinning – pruning 3 Mathematic Morphology mathematical framework used for: • pre-processing – noise filtering, shape simplification, ... • enhancing object structure – skeletonization, convex hull... • segmentation – watershed,… • quantitative description – area, perimeter, ... 4 Z2 and Z3 • set in mathematic morphology represent objects in an image – binary image (0 = white, 1 = black) : the element of the set is the coordinates (x,y) of pixel belong to the object a Z2 • gray-scaled image : the element of the set is the coordinates (x,y) of pixel belong to the object and the gray levels a Z3 Y axis Y axis X axis Z axis X axis 5 Basic Set Operators Set operators Denotations A Subset B A ⊆ B Union of A and B C= A ∪ B Intersection of A and B C = A ∩ B Disjoint A ∩ B = ∅ c Complement of A A ={ w | w ∉ A} Difference of A and B A-B = {w | w ∈A, w ∉ B } Reflection of A Â = { w | w = -a for a ∈ A} Translation of set A by point z(z1,z2) (A)z = { c | c = a + z, for a ∈ A} 6 Basic Set Theory 7 Reflection and Translation Bˆ = {w ∈ E 2 : w
    [Show full text]
  • Lecture 5: Binary Morphology
    Lecture 5: Binary Morphology c Bryan S. Morse, Brigham Young University, 1998–2000 Last modified on January 15, 2000 at 3:00 PM Contents 5.1 What is Mathematical Morphology? ................................. 1 5.2 Image Regions as Sets ......................................... 1 5.3 Basic Binary Operations ........................................ 2 5.3.1 Dilation ............................................. 2 5.3.2 Erosion ............................................. 2 5.3.3 Duality of Dilation and Erosion ................................. 3 5.4 Some Examples of Using Dilation and Erosion . .......................... 3 5.5 Proving Properties of Mathematical Morphology .......................... 3 5.6 Hit-and-Miss .............................................. 4 5.7 Opening and Closing .......................................... 4 5.7.1 Opening ............................................. 4 5.7.2 Closing ............................................. 5 5.7.3 Properties of Opening and Closing ............................... 5 5.7.4 Applications of Opening and Closing .............................. 5 Reading SH&B, 11.1–11.3 Castleman, 18.7.1–18.7.4 5.1 What is Mathematical Morphology? “Morphology” can literally be taken to mean “doing things to shapes”. “Mathematical morphology” then, by exten- sion, means using mathematical principals to do things to shapes. 5.2 Image Regions as Sets The basis of mathematical morphology is the description of image regions as sets. For a binary image, we can consider the “on” (1) pixels to all comprise a set of values from the “universe” of pixels in the image. Throughout our discussion of mathematical morphology (or just “morphology”), when we refer to an image A, we mean the set of “on” (1) pixels in that image. The “off” (0) pixels are thus the set compliment of the set of on pixels. By Ac, we mean the compliment of A,or the off (0) pixels.
    [Show full text]
  • Hit-Or-Miss Transform
    Hit-or-miss transform • Used to extract pixels with specific neighbourhood configurations from an image • Grey scale extension exist • Uses two structure elements B1 and B2 to find a given foreground and background configuration, respectively C HMT B X={x∣B1x⊆X ,B2x⊆X } • Example: 1 Morphological Image Processing Lecture 22 (page 1) 9.4 The hit-or-miss transformation Illustration... Morphological Image Processing Lecture 22 (page 2) Objective is to find a disjoint region (set) in an image • If B denotes the set composed of X and its background, the• match/hit (or set of matches/hits) of B in A,is A B =(A X) [Ac (W X)] ¯∗ ª ∩ ª − Generalized notation: B =(B1,B2) • Set formed from elements of B associated with B1: • an object Set formed from elements of B associated with B2: • the corresponding background [Preceeding discussion: B1 = X and B2 =(W X)] − More general definition: • c A B =(A B1) [A B2] ¯∗ ª ∩ ª A B contains all the origin points at which, simulta- • ¯∗ c neously, B1 found a hit in A and B2 found a hit in A Hit-or-miss transform C HMT B X={x∣B1x⊆X ,B2x⊆X } • Can be written in terms of an intersection of two erosions: HMT X= X∩ X c B B1 B2 2 Hit-or-miss transform • Simple example usages - locate: – Isolated foreground pixels • no neighbouring foreground pixels – Foreground endpoints • one or zero neighbouring foreground pixels – Multiple foreground points • pixels having more than two neighbouring foreground pixels – Foreground contour points • pixels having at least one neighbouring background pixel 3 Hit-or-miss transform example • Locating 4-connected endpoints SEs for 4-connected endpoints Resulting Hit-or-miss transform 4 Hit-or-miss opening • Objective: keep all points that fit the SE.
    [Show full text]
  • Digital Image Processing
    Digital Image Processing Lecture # 11 Morphological Operations 1 Image Morphology 2 Introduction Morphology A branch of biology which deals with the form and structure of animals and plants Mathematical Morphology A tool for extracting image components that are useful in the representation and description of region shapes The language of mathematical morphology is Set Theory 3 Morphology: Quick Example Image after segmentation Image after segmentation and morphological processing 4 Introduction Morphological image processing describes a range of image processing techniques that deal with the shape (or morphology) of objects in an image Sets in mathematical morphology represents objects in an image. E.g. Set of all white pixels in a binary image. 5 Introduction foreground: background I(p )c I(p)0 This represents a digital image. Each square is one pixel. 6 Set Theory The set space of binary image is Z2 Each element of the set is a 2D vector whose coordinates are the (x,y) of a black (or white, depending on the convention) pixel in the image The set space of gray level image is Z3 Each element of the set is a 3D vector: (x,y) and intensity level. NOTE: Set Theory and Logical operations are covered in: Section 9.1, Chapter # 9, 2nd Edition DIP by Gonzalez Section 2.6.4, Chapter # 2, 3rd Edition DIP by Gonzalez 7 Set Theory 2 Let A be a set in Z . if a = (a1,a2) is an element of A, then we write aA If a is not an element of A, we write aA Set representation A{( a1 , a 2 ),( a 3 , a 4 )} Empty or Null set A 8 Set Theory Subset: if every element of A is also an element of another set B, the A is said to be a subset of B AB Union: The set of all elements belonging either to A, B or both CAB Intersection: The set of all elements belonging to both A and B DAB 9 Set Theory Two sets A and B are said to be disjoint or mutually exclusive if they have no common element AB Complement: The set of elements not contained in A Ac { w | w A } Difference of two sets A and B, denoted by A – B, is defined as c A B { w | w A , w B } A B i.e.
    [Show full text]
  • Introduction to Mathematical Morphology
    COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 35, 283-305 (1986) Introduction to Mathematical Morphology JEAN SERRA E. N. S. M. de Paris, Paris, France Received October 6,1983; revised March 20,1986 1. BACKGROUND As we saw in the foreword, there are several ways of approaching the description of phenomena which spread in space, and which exhibit a certain spatial structure. One such approach is to consider them as objects, i.e., as subsets of their space of definition. The method which derives from this point of view is. called mathematical morphology [l, 21. In order to define mathematical morphology, we first require some background definitions. Consider an arbitrary space (or set) E. The “objects” of this :space are the subsets X c E; therefore, the family that we have to handle theoretically is the set 0 (E) of all the subsets X of E. The set p(E) is incomparably less arbitrary than E itself; indeed it is constructured to be a Boolean algebra [3], that is: (i) p(E) is a complete lattice, i.e., is provided with a partial-ordering relation, called inclusion, and denoted by “ c .” Moreover every (finite or not) family of members Xi E p(E) has a least upper bound (their union C/Xi) and a greatest lower bound (their intersection f7 X,) which both belong to p(E); (ii) The lattice p(E) is distributiue, i.e., xu(Ynz)=(XuY)n(xuZ) VX,Y,ZE b(E) and is complemented, i.e., there exist a greatest set (E itself) and a smallest set 0 (the empty set) such that every X E p(E) possesses a complement Xc defined by the relationships: XUXC=E and xn xc= 0.
    [Show full text]
  • Grayscale Mathematical Morphology Václav Hlaváč
    Grayscale mathematical morphology Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac, [email protected] also Center for Machine Perception, http://cmp.felk.cvut.cz Courtesy: Petr Matula, Petr Kodl, Jean Serra, Miroslav Svoboda Outline of the talk: Set-function equivalence. Top-hat transform. Umbra and top of a set. Geodesic method. Ultimate erosion. Gray scale dilation, erosion. Morphological reconstruction. A quick informal explanation 2/42 Grayscale mathematical morphology is the generalization of binary morphology for images with more gray levels than two or with voxels. 3 The point set A ∈ E . The first two coordinates span in the function (point set) domain and the third coordinate corresponds to the function value. The concepts supremum ∨ (also the least upper bound), resp. infimum ∧ (also the greatest lower bound) play a key role here. Actually, the related operators max, resp. min, are used in computations with finite sets. Erosion (resp. dilation) of the image (with the flat structuring) element assigns to each pixel the minimal (resp. maximal) value in the chosen neighborhood of the current pixel of the input image. The structuring element (function) is a function of two variables. It influences how pixels in the neighborhood of the current pixel are taken into account. The value of the (non-flat) structuring element is added (while dilating), resp. subtracted (while eroding) when the maximum, resp. minimum is calculated in the neighborhood. Grayscale mathematical morphology explained via binary morphology 3/42 It is possible to introduce grayscale mathematical morphology using the already explained binary (black and white only) mathematical morphology.
    [Show full text]
  • Abstract Mathematical Morphology Based on Structuring Element
    Abstract Mathematical morphology based on structuring element: Application to morpho-logic Marc Aiguier1 and Isabelle Bloch2 and Ram´on Pino-P´erez3 1. MICS, CentraleSupelec, Universit´eParis Saclay, France [email protected] 2. LTCI, T´el´ecom Paris, Institut Polytechnique de Paris, France [email protected] 3. Departemento de Matematicas, Facultad de Ciencias, Universidad de Los Andes, M´erida, Venezuela [email protected] Abstract A general definition of mathematical morphology has been defined within the algebraic framework of complete lattice theory. In this frame- work, dealing with deterministic and increasing operators, a dilation (re- spectively an erosion) is an operation which is distributive over supremum (respectively infimum). From this simple definition of dilation and ero- sion, we cannot say much about the properties of them. However, when they form an adjunction, many important properties can be derived such as monotonicity, idempotence, and extensivity or anti-extensivity of their composition, preservation of infimum and supremum, etc. Mathemati- cal morphology has been first developed in the setting of sets, and then extended to other algebraic structures such as graphs, hypergraphs or sim- plicial complexes. For all these algebraic structures, erosion and dilation are usually based on structuring elements. The goal is then to match these structuring elements on given objects either to dilate or erode them. One of the advantages of defining erosion and dilation based on structuring ele- arXiv:2005.01715v1 [math.CT] 4 May 2020 ments is that these operations are adjoint. Based on this observation, this paper proposes to define, at the abstract level of category theory, erosion and dilation based on structuring elements.
    [Show full text]
  • Computer Vision – A
    CS4495 Computer Vision – A. Bobick Morphology CS 4495 Computer Vision Binary images and Morphology Aaron Bobick School of Interactive Computing CS4495 Computer Vision – A. Bobick Morphology Administrivia • PS7 – read about it on Piazza • PS5 – grades are out. • Final – Dec 9 • Study guide will be out by Thursday hopefully sooner. CS4495 Computer Vision – A. Bobick Morphology Binary Image Analysis Operations that produce or process binary images, typically 0’s and 1’s • 0 represents background • 1 represents foreground 00010010001000 00011110001000 00010010001000 Slides: Linda Shapiro CS4495 Computer Vision – A. Bobick Morphology Binary Image Analysis Used in a number of practical applications • Part inspection • Manufacturing • Document processing CS4495 Computer Vision – A. Bobick Morphology What kinds of operations? • Separate objects from background and from one another • Aggregate pixels for each object • Compute features for each object CS4495 Computer Vision – A. Bobick Morphology Example: Red blood cell image • Many blood cells are separate objects • Many touch – bad! • Salt and pepper noise from thresholding • How useable is this data? CS4495 Computer Vision – A. Bobick Morphology Results of analysis • 63 separate objects detected • Single cells have area about 50 • Noise spots • Gobs of cells CS4495 Computer Vision – A. Bobick Morphology Useful Operations • Thresholding a gray-scale image • Determining good thresholds • Connected components analysis • Binary mathematical morphology • All sorts of feature extractors, statistics (area, centroid, circularity, …) CS4495 Computer Vision – A. Bobick Morphology Thresholding • Background is black • Healthy cherry is bright • Bruise is medium dark • Histogram shows two cherry regions (black background has been removed) Pixel counts Pixel 0 Grayscale values 255 CS4495 Computer Vision – A. Bobick Morphology Histogram-Directed Thresholding • How can we use a histogram to separate an image into 2 (or several) different regions? Is there a single clear threshold? 2? 3? CS4495 Computer Vision – A.
    [Show full text]
  • Morphological Operations on Matrix-Valued Images
    Morphological Operations on Matrix-Valued Images Bernhard Burgeth, Martin Welk, Christian Feddern, and Joachim Weickert Mathematical Image Analysis Group Faculty of Mathematics and Computer Science, Bldg. 27 Saarland University, 66041 Saarbruc¨ ken, Germany burgeth,welk,feddern,weickert @mia.uni-saarland.de f g http://www.mia.uni-saarland.de Abstract. The output of modern imaging techniques such as diffusion tensor MRI or the physical measurement of anisotropic behaviour in materials such as the stress-tensor consists of tensor-valued data. Hence adequate image processing methods for shape analysis, skeletonisation, denoising and segmentation are in demand. The goal of this paper is to extend the morphological operations of dilation, erosion, opening and closing to the matrix-valued setting. We show that naive approaches such as componentwise application of scalar morphological operations are unsatisfactory, since they violate elementary requirements such as invariance under rotation. This lead us to study an analytic and a geo- metric alternative which are rotation invariant. Both methods introduce novel non-component-wise definitions of a supremum and an infimum of a finite set of matrices. The resulting morphological operations incorpo- rate information from all matrix channels simultaneously and preserve positive definiteness of the matrix field. Their properties and their per- formance are illustrated by experiments on diffusion tensor MRI data. Keywords: mathematical morphology, dilation, erosion, matrix-valued imaging, DT-MRI 1 Introduction Modern data and image processing encompasses more and more the analysis and processing of matrix-valued data. For instance, diffusion tensor magnetic reso- nance imaging (DT-MRI), a novel medical image acquisition technique, measures the diffusion properties of water molecules in tissue.
    [Show full text]
  • Mathematical Morphology
    Mathematical morphology Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/˜hlavac, [email protected] Outline of the talk: Point sets. Morphological transformation. Skeleton. Erosion, dilation, properties. Thinning, sequential thinning. Opening, closing, hit or miss. Distance transformation. Morphology is a general concept 2/55 In biology: the analysis of size, shape, inner structure (and relationship among them) of animals, plants and microorganisms. In linguistics: analysis of the inner structure of word forms. In materials science: the study of shape, size, texture and thermodynamically distinct phases of physical objects. In signal/image processing: mathematical morphology – a theoretical model based on lattice theory used for signal/image preprocessing, segmentation, etc. Mathematical morphology, introduction 3/55 Mathematical morphology (MM): is a theory for analysis of planar and spatial structures; is suitable for analyzing the shape of objects; is based on a set theory, integral algebra and lattice algebra; is successful due to a a simple mathematical formalism, which opens a path to powerful image analysis tools. The morphological way . The key idea of morphological analysis is extracting knowledge from the relation of an image and a simple, small probe (called the structuring element), which is a predefined shape. It is checked in each pixel, how does this shape matches or misses local shapes in the image. MM founding fathers 4/55 Georges Matheron (∗ 1930, † 2000) Jean Serra (∗ 1940) Matheron, G. Elements pour une Theorie del Milieux Poreux Masson, Paris, 1967. Serra, J. Image Analysis and Mathematical Morphology, Academic Press, London 1982.
    [Show full text]
  • Chapter 7 Mathematical Morphology with Noncommutative Symmetry Groups Jos B.T.M
    Chapter 7 Mathematical Morphology with Noncommutative Symmetry Groups Jos B.T.M. Roerdink Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Mathematical morphology as originally developed by Matheron and Serra is a theory of set mappings, modeling binary image transformations, that are invar­ iant under the group of Euclidean translations. Because this framework turns out to be too restricted for many practical applications, various generalizations have been proposed. First, the translation group may be replaced by an arbitrary com­ mutative group. Second, one may consider more general object spaces, such as the set of all convex subsets of the plane or the set of gray-level functions on the plane, requiring a formulation in terms of complete lattices. So far, symmetry properties have been incorporated by assuming that the allowed image transfor­ mations are invariant under a certain commutative group of automorphisms on the lattice. In this chapter we embark on another generalization of mathematical morphology by dropping the assumption that the invariance group is commuta­ tive. To this end we consider an arbitrary homogeneous space (the plane with the Euclidean translation group is one example, the sphere with the rotation group another), that is, a set 2e on which a transitive but not necessarily commutative transformation group f is defined. As our object space we then take the Boolean algebra 0P(2e) of all subsets of this homogeneous space. First we consider the case in which the transformation group is simply transitive or, equivalently, the basic set 2e is itself a group, so that we may study the Boolean algebra '2?(f).
    [Show full text]
  • Revised Mathematical Morphological Concepts
    Advances in Pure Mathematics, 2015, 5, 155-161 Published Online March 2015 in SciRes. http://www.scirp.org/journal/apm http://dx.doi.org/10.4236/apm.2015.54019 Revised Mathematical Morphological Concepts Joseph Ackora-Prah, Yao Elikem Ayekple, Robert Kofi Acquah, Perpetual Saah Andam, Eric Adu Sakyi, Daniel Gyamfi Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana Email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Received 17 February 2015; accepted 12 March 2015; published 23 March 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We revise some mathematical morphological operators such as Dilation, Erosion, Opening and Closing. We show proofs of our theorems for the above operators when the structural elements are partitioned. Our results show that structural elements can be partitioned before carrying out morphological operations. Keywords Mathematical Morphology, Dilation, Erosion, Opening, Closing 1. Introduction Mathematical morphology is the theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. We consider classical mathematical mor- phology as a field of nonlinear geometric image analysis, developed initially by Matheron [1], Serra [2] and their collaborators, which is applied successfully to geological and biomedical problems of image analysis. The basic morphological operators were developed first for binary images based on set theory [1] [2] inspired by the work of Minkowski [3] and Hadwiger [4].
    [Show full text]