On the Identity of Snapping Shrimp Described and Identified by W. N. Lockington, 1878

Total Page:16

File Type:pdf, Size:1020Kb

On the Identity of Snapping Shrimp Described and Identified by W. N. Lockington, 1878 Bull. Southern California Acad. Sci. 93(3), 1994, pp. 118-126 © Southern California Academy of Sciences, 1994 On the Identity of Snapping Shrimp Described and Identified by W. N. Lockington, 1878 Mary K. Wicksten Department of Biology, Texas A&M University, College Station, Texas 77842 Abstract. — W. N. Lockington (1878) wrote the first key and guide to the snapping shrimp of North America. Many records came from the eastern Pacific Ocean, from California to Panama. His paper includes 10 species recognizable today, one record that probably includes more than one species under the same name, and reports and descriptions of another six species that are unrecognizable or questionable. The five species described as new by Lockington probably are var- iants of species that have been described since 1878; if so, Lockington's species names may be available as senior synonyms. The identities of some of these species are likely to remain uncertain because the original descriptions were brief and without illustrations, the types have been lost and the range of variation within most alpheid species is unknown. The first attempt to prepare a summary and key to the snapping shrimp (family Alpheidae) of North America was that of W. N. Lockington of the California Academy of Sciences. In 1878, he published "Remarks on some new Alphei, with a synopsis of North American Species," which presented 18 species. Most of these came from the Pacific Ocean, including the Gulf of California. The paper included species described by Lockington as well as others previously described by Say (1818) and Kingsley (1878a). Lockington considered all of the species to belong either to Alpheus or Betaeus. In comparing Lockington's account with modern works on alpheid shrimp, one is surprised by the small number of species. The modern reader should remember that extensive collections had yet to be made in much of the United States and Mexico. Like many curators of the time, Lockington relied upon amateur collec- tors and fishermen to send specimens to him for examination. The majority of the species known in 1878 were either intertidal species or shallow subtidal species that could be collected in holdfasts or rocks cast ashore after storms. As was customary at the time, Lockington presented brief descriptions of new species without illustrations. New species were compared with known species, with important morphological differences emphasized. The features presented by Lockington (1878) in many cases only allow the modern reader to determine the genus to which the animal belongs. Features such as presence or absence of epipods, shape of the dactyls of the walking legs, and many of the ridges, grooves and spines of the chelae were not included or were described in general terms. Although locations for the species were given, no type locality was designated if 118 IDENTITY OF SNAPPING SHRIMP 119 specimens came from more than one collecting site, nor was a particular specimen mentioned in the text as being a holotype. Lockington's type material was deposited at the California Academy of Sciences. A few duplicate or exchange specimens seem to have been sent to the Smithsonian Institution or European museums, but as yet, no alpheid specimens have been located. In 1906, almost all of the specimens of the Academy as well as much of the building housing them were destroyed by the fire following the major earth- quake in San Francisco. (See Bronson 1959 for an account of how a few of the Academy's specimens were rescued.) No invertebrate specimens are known to have been saved; indeed, being preserved in alcohol, the crustaceans probably were among the first specimens to catch fire. As part of an ongoing attempt to prepare a master species list of carideans of the tropical eastern Pacific Ocean, M. E. Hendrickx (Estacion Mazatlan, Universi- dad Autonoma de Mexico) and I have been examining historic records of shrimp of the area. Despite the uncertainty of identification of some of the species, the records given by Lockington are useful for comparison of modern and historic distributions of alpheid species. Kim and Abele (1988) considered five of Lock- ington's species of Alpheus to be valid, but noted that three of the supposed species were unreported since Lockington's report. However, most of Lockington's names have been ignored for over 50 years, and, if found to be senior synonyms of other names, could be suppressed (International Commission on Zoological Nomen- clature Article 79c, 1985). This paper provides the modern identification, when known, of Lockington's species of 1878 and attempts to identify the species that remain unrecognized. Methods In the account of the species, the name used by Lockington and the page on which it appears is provided, along with the localities as given in the paper of 1878. Localities are given in quotations if they are vague or questionable in the original text. However, Lockington himself was inconsistent in giving localities, giving localities as "Port Escondido, Gulf of California," which can be interpreted either as Port Escondido in the Gulf of California or Port Escondido as well as the rest of the Gulf of California. (Probably the former interpretation is correct.) Species described prior to 1878 and their current taxonomic status and known range are given first. Species described in the paper are discussed later, with clues to their current identification. Many of Lockington's specimens came from "Port Escondido" on the Gulf of California (now Puerto Escondido, Baja California Sur, Mexico; 25°50'N, 111°19'W). More recent collecting has been carried out there by the University of Southern California. I examined published records of alpheids collected at Puerto Escondido during the trips of the Velero III and later expeditions (Wicksten 1983; Kim and Abele 1988), as well as unpublished records in the card catalogue of the Hancock collections at the Natural History Museum of Los Angeles County. The alpheids from these collections have not been completely identified to species and catalogued by station. However, the existing records give some indication of what species might occur there and therefore might be the same as some of Lockington's species. 120 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES Alpheid Species Reported by Lockington (1878) 1. Species Described Prior to 1878: Alpheus affinis Kingsley, 1878a: Panama (p. 476). Status: Now Alpheus normanni Kingsley, 1878b. (Alpheus affinis Kingsley, 1878a is a homonym of A. affinis Guise, 1854; see Kim and Abele 1988.) Western Atlantic Ocean from Virginia to Sao Paulo, Brazil and eastern Pacific Ocean from Gulf of California to Galapagos Islands (Kim and Abele 1988). Alpheus bellimanus Lockington, 1877a: San Diego (California) (p. 470). Status: Valid species; Monterey Bay, California to Galapagos Islands (Wick- sten 1983; Kim and Abele 1988). Alpheus clamator Lockington, 1877b: Santa Barbara "Islands," California and San Bartolme Bay, Baja California (p. 469). Status: Valid species; Dark Gulch, Mendocino County, California (T. Chess, U.S. National Marine Fisheries, personal communication, range extension) to San Bartholome Bay, Baja California Sur (Wicksten 1984). Alpheus cylindricus Kingsley, 1878a: Pearl Island, Bay of Panama (p. 478). Status: Valid species; eastern and western Atlantic Ocean from Islands of Principe, Sao Tome and Annobon; Bimini, Bahamas, Bermudas and Florida through Barbados to Bahia, Brazil; Rower Gardens Reefs off Texas; eastern Pacific Ocean from Gulf of California to Galapagos Islands (Kim and Abele 1988). Alpheus aequidactylus Lockington, 1877b: Monterey, California (p. 472). Status: Now Alpheopsis equidactylus; Monterey Bay to Cortez Bank, Cali- fornia (Wicksten 1984). Alpheus floridanus Kingsley, 1878a: Fort Jefferson, Florida (p. 476). Status: Valid species; eastern and western Atlantic Ocean from Guinea to Congo and Principe Island; Gulf of Mexico to Bahia, Brazil; eastern Pacific Ocean from Gulf of California to Ecuador (Kim and Abele 1988). Alpheus heterochaelis Say, 1818: La Paz, San Jose Island, Amortiguado Bay, Mulege Bay and Port Escondido, west side of Gulf of California; Magdalena Bay, Baja California (p. 475). Status: Although A. heterochaelis is a valid species, it is considered to inhabit only the western Atlantic (Christoffersen 1984). Remarks: Kim and Abele (1988) reported that records of A. heterochaelis from the eastern Pacific Ocean by Kingsley (1878a) and Rathbun (1900) in- cluded in part A. bouvieri A. Milne Edwards, 1878. However, it is unclear how they came to this identification, for they did not indicate that they examined the specimens on which the records of A. heterochaelis were based. Lockington's specimens may have included A. californiensis Holmes, 1900 which has been collected at Magdalena Bay, and other species of the "Edwardsi" group of Alpheus, which resemble A. heterochaelis. Lockington noted that his larger specimens "showed traces of a varied coloration," which suggests that he had more than one species. Alpheus minor Say, 1818: no locality given by Lockington (p. 472). Say reported it from the "coasts of the southern states, and of East Florida." Status: Now Synalpheus minus (Say, 1818); Bermuda and North Carolina to Alagoas, Brazil (Chace 1972). IDENTITY OF SNAPPING SHRIMP 121 Alpheus panamensis Kingsley, 1878a: Acajutla, "Central America" (now Pacific coast of El Salvador) and Panama (p. 473). Status: Valid species; eastern Pacific Ocean from Costa Rica to Peru (Kim and Abele 1988). Alpheus parvimanus Kingsley, 1878a: Panama (p. 477). Status: Identity unknown. Remarks: Kingsley's description suggests that the species belonged to the diverse "Edwardsi" group, but, other than mentioning that the larger chela had "a constriction of both margins posterior to the articulation of the dactylus," there are too few details to compare the shrimp with those described more recently. Alpheus sulcatus Kingsley, 1878a: Bay of Panama, Zorritas, Peru (p. 475). Kingsley did not designate a type locality. Status: Valid species; circumtropical except western Atlantic Ocean, eastern Pacific Ocean from Gulf of California to Peru (Wicksten 1983; Kim and Abele 1988).
Recommended publications
  • From the Caribbean Sea
    Cah. Biol. Mar. (2007) 48 : 241-247 Alpheus zimmermani sp. nov., a new colourful snapping shrimp (Crustacea: Decapoda) from the Caribbean Sea Arthur ANKER Instituto Smithsonian de Investigaciones Tropicales, Apartado 0843–03092, Balboa, Ancón, Panamá, República de Panamá / Smithsonian Tropical Research Institute, Naos Unit 0948, APO AA 34002, USA. Email: [email protected] Abstract: A new snapping shrimp, Alpheus zimmermani sp. nov. is described on the basis of a single specimen collected on a coral reef off Guana Island, British Virgin Islands, Caribbean Sea. The new species has some morphological similarities with A. bouvieri A. Milne-Edwards and A. leviusculus Dana, but differs from these taxa by the strong medio- dorsal carina reaching far beyond the mid-length of the carapace, several features on the chelipeds, and by the conspicuous colour pattern. Résumé : Alpheus zimmermani sp. nov., une nouvelle crevette pistolet très colorée (Crustacea : Decapoda) de la Mer Caraïbe. Une nouvelle espèce de crevette-pistolet, Alpheus zimmermani sp. nov., est décrite avec un seul spécimen récolté sur un récif de corail au large de l’île de Guana faisant partie des Îles Vierges Britanniques, dans la Mer Caraïbe. L’espèce nouvelle possède quelques similarités avec A. bouvieri A. Milne-Edwards et A. leviusculus Dana, mais diffère nettement de ces deux espèces par la carène médiodorsale très prononcée et atteignant la moitié postérieure de la carapace, par plusieurs caractères sur les chélipèdes, ainsi que par sa remarquable coloration. Keywords: Alpheidae l Alpheus l Snapping shrimp l New species l Western Atlantic l Coral reef l Colour pattern. Introduction Wicksten & McClure, 2003).
    [Show full text]
  • EU Position the EU Thanks the OIE and in General Supports the Adoption of This Modified User's Guide
    Ref. Ares(2018)2526762 - 15/05/2018 Annex 2 Original: English February 2018 REPORT OF THE MEETING OF THE OIE AQUATIC ANIMAL HEALTH STANDARDS COMMISSION EU comment The EU would like to commend the OIE Aquatic Animal Health Standards Commission for its work and for having taken into consideration EU comments on the Aquatic Code and Manual submitted previously. A number of general comments on this report of the February 2018 meeting of the Aquatic Animals Commission as well as the intended positions of the EU on the draft Aquatic Code and Manual chapters proposed for adoption at the 86th OIE General Session are inserted in the text below, while specific comments are inserted in the text of the respective annexes to the report. The EU would like to stress again its continued commitment to participate in the work of the OIE and to offer all technical support needed by the Aquatic Animals Commission and its ad hoc groups for future work on the Aquatic Code and Manual. The OIE Aquatic Animal Health Standards Commission (hereinafter referred to as the Aquatic Animals Commission) met at OIE Headquarters in Paris from 14 to 21 February 2018. The list of participants is attached as Annex 1. The Aquatic Animals Commission thanked the following Member Countries for providing written comments on draft texts for the OIE Aquatic Animal Health Code (hereinafter referred to as the Aquatic Code) and OIE Manual of Diagnostic Tests for Aquatic Animals (hereinafter referred to as the Aquatic Manual) circulated after the Commission’s September 2017 meeting: Argentina, Australia, Canada, Chile, Chinese Taipei, Costa Rica, Fiji, Guatemala, Japan, Mexico, New Caledonia, Norway, Singapore, Switzerland, Thailand, the United States of America (USA) and the Member States of the European Union (EU).
    [Show full text]
  • <I>Bartholomea Annulata</I>
    BULLETIN OF MARINE SCIENCE, 37(3): 893-904,1985 CORAL REEF PAPER TWO MORE SIBLING SPECIES OF ALPHEID SHRIMPS ASSOCIATED WITH THE CARIBBEAN SEA ANEMONES BARTHOLOMEA ANNULATA AND HETERACTIS LUCIDA Nancy Knowlton and Brian D. Keller ABSTRACT We have described two new species of snapping shrimp, Alpheus polystictus and A. ro- quensis. The new species form part of a complex of four sibling species associated with Caribbean sea anemones, the others being the well-known A. armatus Rathbun, 1900 and the recently describedA. immaculatus Knowlton and Keller, 1983. Alpheus roquensis is found with the anemone Heteractis lucida. while the other three shrimps live with Bartholomea annulata. In laboratory choice experiments, each shrimp species prefers the species of an em- one with which it is typically found in the field, although each can shelter under the other species of anemone. All four species are extremely similar morphologically, being distin- guished largely on the basis of color pattern. The validity of the species is confirmed by the total absence of interbreeding; heterospecific male-female pairs are never found in the field, and it is impossible to force pairings between species in the laboratory. Alpheus polystictus is rare in Jamaica and Haiti, while in Venezuela it is sometimes the dominant species to depths of 10 m. In the areas examined, it has always occurred with at least one of the other two Bartholomea associates. The geographic distribution of A. roquensis is more limited, as there are no reports of alpheids associated with Heteractis lucida, and none has been found with this anemone in Jamaica.
    [Show full text]
  • Protection of Host Anemones by Snapping Shrimps: a Case for Symbiotic Mutualism?
    Symbiosis DOI 10.1007/s13199-014-0289-8 Protection of host anemones by snapping shrimps: a case for symbiotic mutualism? AmberM.McCammon& W. Randy Brooks Received: 4 June 2014 /Accepted: 29 July 2014 # Springer Science+Business Media Dordrecht 2014 Abstract The sea anemone Bartholomea annulata is an eco- especially common in marine environments (Roughgarden logically important member of Caribbean coral reefs which host 1975; Poulin and Grutter 1996;Côté2000). Mutualism; a a variety of symbiotic crustacean associates. Crustacean type of symbiotic relationship in which both partners derive exosymbionts typically gain protection from predation by dwell- some benefit from the association, are also widespread across ing with anemones. Concurrently, some symbionts may provide taxa (Boucher et al. 1982). The benefit(s) of symbiont- protection to their host by defending against anemone predators mediated protection of host species from microbial disease, such as the predatory fireworm, Hermodice carunculata,which parasites, and predators is increasingly evident (Haine 2008). can severely damage or completely devour prey anemones. Protection mechanisms are diverse and include various sym- Herein we show through both field and laboratory studies that biont derived chemical defenses (Haine 2008) as well as anemones hosting the symbiotic alpheid shrimp Alpheus armatus maintenance behaviors (Heil and McKey 2003; Stier et al. are significantly less likely to sustain damage by H. carunculata 2012) and defensive social interactions (Glynn 1980; Brooks than anemones without this shrimp. Our results suggest that the and Gwaltney 1993; Heil and McKey 2003;McKeonetal. association between A. armatus and B. annulata, although com- 2012). Previous studies have demonstrated that some crusta- plex because of the numerous symbionts involved, may be closer ceans will actively defend host cnidarians in their natural to mutualism on the symbiotic continuum.
    [Show full text]
  • Real Damage to the Shrimp. It Is Best to Keep Bongo Shrimp Singly Or in Established Pairs
    real damage to the shrimp. It is best to keep Bongo Shrimp singly or in established pairs. PISTOL SHRIMP Pistol shrimp are very different from most other species of shrimp in that they burrow and have the ability to stun and kill their various prey without ever touching them. Most pistol shrimp are in the Alpheidae family and Alpheus genus and are found all over the world. Pistol shrimp get their name from their particular ability to snap their modified larger claw in order to injure prey or predators. The snap is so powerful that it creates a microscopic bubble which shoots out of the claw towards its target. The bubble moves so fast that scientists have recorded the sound to be about 218 Tiger Pistol Shrimp (Alpheus bellulus). Image by Sabine Penisson. decibels, comparable to the sound of a gun-shot. The temperature inside the micro-bubble has been reported to reach approximately 4,700ºC, which is nearly the temperature of the surface of the sun Bongo Shrimp is both a much rarer and more cryptic starfish- (approximately 5,500ºC). The most common species in the trade eating species encountered infrequently in the trade. They are also are Randall’s Pistol Shrimp (Alpheus randalli), Tiger Pistol Shrimp intensely captivating. Bongo Shrimp are orange, black, and white (Alpheus bellulus), Anemone Pistol Shrimp (Alpheus armatus), and and sometimes have tiny blue spots. They grow to about ¾ of an Bull’s Eye Pistol Shrimp (Alpheus soror). A more rarely encountered inch in length and are best kept in nano or pico aquariums.
    [Show full text]
  • Alpheus Agrogon, a New Species of Alpheid Shrimp (Decapoda: Alpheidae) from Gorgona Island, Pacific Coast of Colombia 11
    Rev. 8;01. Trop .. 44(3Y45(1): 395-400.1996-1997 Alpheus agrogon, a new species of alpheid shrimp (Decapoda: Alpheidae) from Gorgona Island, Pacific coast of Colombia 11 Gabriel E. Ramos' Contribución No. 63 del CIME. Centro de Investigaciones Marinas y Estuarinas de la Universidad del Valle. 1 Apartado A�reo 24262. Cali. Colombia. (Re<. 13-IX-I995. Rev. 20-VI-1995. Accep. 28-IX-I995) Abstraet: A ocw species of alpheid shrimp.AlpMus agrogon, is described (rom Gorgona Island. Pacific coa"'! of Colombia, whc:re il wa...; collected in a tide pool.1ñe new spec:ies resembles mosl c10sely A. hy�youflga� Kim &. Abele. and A. "cOpUIU.f Kim &. Abele. bul can be differentiated by the: absence of a rostral carioa belwecn the base of roslrum and Ihe posterior margin of eyes, of leelh or spines aJong lhe inner inferior margin of merus of tirsl pair of pereopods, and of movable spine on lhe ischium of third and fourth pereopods. Key words: Alph�u.f uxro/(on, ocw species. Alpheidae.Gorgona Island.Colombia Several papers describing new species of descriplion. During an aulhor visil lo Ihe alpheid shrimps from Ihe Pacific coasl of National Museum of Natural History. Colombia and ilS islands have been published Smithsonian Institution, Washinglon. D.C., (Abele 1975, Chrisloffersen & Ramos 1988a, lype malerial of selecled species of lhis genus, 1988b, Wickslen 1988, 1989, Ramos & Prahl known from the area, were also exarnined and 1989). Recenlly, Lemailre & Alvarez (1992) compared lo lhe collecled specimen. The laxo­ compiled Ihe published lileralure on decapod nornic analysis lead to the conclusion that it crustaceans from this coast, and recorded in a belongs lo an undescribed species.
    [Show full text]
  • Decapoda: Alpheidae) Species Complex from the Western Atlantic
    Morphology and DNA analyses reveal a new cryptic snapping shrimp of the Alpheus heterochaelis Say, 1818 (Decapoda: Alpheidae) species complex from the western Atlantic Alexandre O. ALMEIDA Department of Biological Sciences, Santa Cruz State University (UESC), Rodovia Jorge Amado, km 16. 45662-900 Ilhéus, Bahia (Brazil) [email protected] Mariana TEROSSI Fernando L. MANTELATTO Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Science and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Graduate Program in Comparative Biology, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto SP (Brazil) [email protected] [email protected] Almeida A. O., Terossi M. & Mantelatto F. L. 2014. — Morphology and DNA analyses reveal a new cryptic snapping shrimp of the Alpheus heterochaelis Say, 1818 (Decapoda: Alpheidae) species complex from the western Atlantic. Zoosystema 36 (1): 53-71. http:// dx.doi.org/10.5252/z2014n1a4 ABSTRACT Previous evidence regarding morphology led us to examine an exhaustive set of specimens assigned to Alpheus heterochaelis Say, 1818 and closely allied species, in order to test for the existence of possible cryptic taxa. The analysis of material assignable to this species from the states of Pará, Bahia and São Paulo in Brazil, and from Venezuela and Colombia revealed minor morphological differences between these specimens and others that could be confidently identified as A. heterochaelis from the eastern USA coast and the Gulf of Mexico, such as the absence of spiniform setae on the ischium of the fifth pereiopods (vs present in A. heterochaelis s.s.). Additionally, genetic analysis using the ribosomal 16S subunit also indicated levels of genetic difference supporting the existence of a KEY WORDS Crustacea, cryptic species and revealing that A.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • A BEHAVIORAL STUDY of the HAWAIIAN GOBY-SHRIMP RELATIONSHIP and the EFFECTS of Predanon on the SYSTEM
    A BEHAVIORAL STUDY OF THE HAWAIIAN GOBY-SHRIMP RELATIONSHIP AND THE EFFECTS OF PREDAnON ON THE SYSTEM A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ZOOLOGY AUGUST 2005 By Robert Paul Nelson Thesis Committee: Jim Parrish Julie Bailey-Brock Tim Tricas Acknowledgments: I'd like to thank first and foremost my advisor Dr. J.D. Parrish for all his help in organizing and funding the project and reviewing my manuscript. Thanks to my committee members, Dr. Tim Tricas and Dr. Julie Bailey-Brock. Dr. Andrew Thompson helped in reviewing the manuscript. Mahalo to Casey Kaneshiro, Tyler Bouland and Rami Huiguas for collecting most of the daily rhythm cycle data. I also wish to express thanks for help from Georgi Kinsela, Jan Dierking, Katja Wunderbar, and Jeff Whitehurst. 111 Abstract The belief that the relationship between certain gobies and snapping shrimp (Alpheidae) is mutualistic typically includes the assumption that predation is a selective force driving the co-evolution of the relationship. In this study, I first showed the importance of the Hawaiian shrimp goby (Psilogobius mainlandi) to the sheltering behavior of its associated alpheid shrimp. Shrimp spent 53.6 ± 21.8 percent oflight hours in the day outside burrows with gobies present, but only 6.9 ± 3.4 percent ofthe time outside without gobies present. I then examined effects of predation by experimentally excluding predators on gobies from several I.S-m square plots and observing the subsequent density and size of gobies.
    [Show full text]
  • Vision in the Snapping Shrimp Alpheus Heterochaelis Alexandra C
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb209015. doi:10.1242/jeb.209015 RESEARCH ARTICLE Vision in the snapping shrimp Alpheus heterochaelis Alexandra C. N. Kingston1,*, Rebecca L. Lucia1, Luke T. Havens1,2, Thomas W. Cronin3 and Daniel I. Speiser1 ABSTRACT cues to choose their cleaners, but it is unlikely shrimp are using Snapping shrimp engage in heterospecific behavioral associations in visual cues to choose their clients (Caves et al., 2016). which their partners, such as goby fish, help them avoid predators. It Similarly, asymmetries between visual abilities may influence has been argued that snapping shrimp engage in these partnerships behavioral associations between some species of snapping shrimp because their vision is impaired by their orbital hood, an extension of (Decapoda: Alpheidae; also known as pistol shrimp; Fig. 1A) and their carapace that covers their eyes. To examine this idea, we heterospecific partners such as gobies (Perciformes: Gobiidae) assessed the visual abilities of snapping shrimp. We found the big (Karplus, 1987; Karplus and Thompson, 2011; Luther, 1958; claw snapping shrimp, Alpheus heterochaelis, has spatial vision Magnus, 1967; Preston, 1978). Snapping shrimp are well known for provided by compound eyes with reflecting superposition optics. their ability to produce cavitation bubbles with their specialized These eyes view the world through an orbital hood that is 80–90% as snapping claws. When these cavitation bubbles collapse, they transparent as seawater across visible wavelengths (400–700 nm). release energy in the form of sound, light and a shock wave that can Through electroretinography and microspectrophotometry, we found stun or kill potential predators or prey (Knowlton and Moulton, the eyes of A.
    [Show full text]
  • Crustacea: Decapoda: Caridea: Alpheidae) from Japan, Associated with the Innkeeper Worm Ikedosoma Elegans (Annelida: Echiura: Echiuridae)
    Zootaxa 4058 (1): 101–111 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4058.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:605E2A8F-6CC5-4037-90C7-BA3AE70F8ED6 A new species of the snapping shrimp genus Alpheus (Crustacea: Decapoda: Caridea: Alpheidae) from Japan, associated with the innkeeper worm Ikedosoma elegans (Annelida: Echiura: Echiuridae) TOMOYUKI KOMAI Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan. E-mail: [email protected] Abstract A new species of the snapping shrimp genus Alpheus Fabricius, 1798, Alpheus ikedosoma, is described and illustrated on the basis of material from Boso Peninsula and Ariake Sea, Japan. All examined specimens were extracted with the help of a bait suction pump from burrows of innkeeper worm (Annelida: Echiura), constructed on easily accessible intertidal sand beaches or sand flats. The host worm from Boso Peninsula was identified as Ikedosoma elegans (Ikeda, 1904) (Echi- uridae). The new species is tentatively referred to the A. brevirostris (Olivier, 1811) species group, but it is characteristic in having several unusual features for the group, such as the very short rostrum without dorsal ridge, the absence of adros- tral grooves on the carapace, the strongly reduced dorsolateral spines on the telson, the unarmed antennal basicerite, the non-elongate, almost glabrous major chela, and the lack of movable spines or spinules on ventromesial margin of each cheliped merus. The new species represents the sixth species of Alpheus associated with echiuran burrows.
    [Show full text]