FINAL REPORT Structure and Function of Ephemeral Streams in the Arid and Semiarid Southwest: Implications for Conservation and Management

Total Page:16

File Type:pdf, Size:1020Kb

FINAL REPORT Structure and Function of Ephemeral Streams in the Arid and Semiarid Southwest: Implications for Conservation and Management FINAL REPORT Structure and Function of Ephemeral Streams in the Arid and Semiarid Southwest: Implications for Conservation and Management SERDP Project RC-1726 JULY 2015 Juliet Stromberg Erika Gallo Kathleen Lohse Thomas Meixner Eric Moody John Sabo Danika Setaro Arizona State University Distribution Statement A This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 24-07-2015 Final 26-04-2010 to 31-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W912HQ-10-C-0028 5b. GRANT NUMBER Structure and Function of Ephemeral Streams in the Arid and Semiarid RC-1726 Southwest and Implications for Conservation and Management, Version 2 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER NA Juliet C. Stromberg, Erika L. Gallo, Kathleen A. Lohse, Thomas Meixner, 5e. TASK NUMBER All tasks Eric K. Moody, John L. Sabo, and Danika L. Setaro 5f. WORK UNIT NUMBER NA 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER LMS 0409 and LMS 0410 School of Life Sciences Arizona State University Tempe AZ 85287-4501 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Strategic Environmental Research and Development Program 4800 MARK CENTER DRIVE, SERDP 11. SPONSOR/MONITOR’S REPORT SUITE 17D08 NUMBER(S) ALEXANDRIA VA 22350-3600 RC-1726 12. DISTRIBUTION / AVAILABILITY STATEMENT This information is publicly available. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project’s goal was to improve understanding of the hydroclimatic drivers of biotic communities and ecosystem processes in ephemeral stream channels as a basis for projecting response to regional climate change. Data were collected on stream hydrology, litter decomposition, nutrients, vegetation, seed banks, and ground-dwelling soil arthropods. Relationships between rainfall and stream flow permanence varied by stream flow type. Duration of flow and precipitation were decoupled for intermittent and semiperennial streams because of contributions from groundwater discharge and the vadose zone. Decomposition and nutrient release were tightly coupled to stream flow for the narrow band along the stream channel, but not for the associated riparian zone. Along the continuum from ephemeral to semiperennial stream flow, trade-offs were apparent between riparian plant biomass (high at wetter sites) and plant species diversity (high at dry sites with sparse canopy). Ground dwelling arthropods were strongly influenced by flow permanence, with effects being seasonally dynamic. The results demonstrate the need to conserve a variety of stream flow types to meet the sometimes mutually exclusive goals of high ecosystem productivity and high species richness. The many small, unnamed ephemeral streams in the piedmont of the Huachuca Mountains and Barry Goldwater Range have high conservation value. 15. SUBJECT TERMS Ephemeral stream, riparian, hydrology, semiarid region, diversity, climate change 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Juliet C, Stromberg a. REPORT b. ABSTRACT c. THIS PAGE SAR 19b. TELEPHONE NUMBER (include area code) U U U 140 (602)520-8643 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Table of Contents Abstract...........................................................................................................................................1 Chapter 1. Objectives .....................................................................................................................3 Chapter 2. Background...................................................................................................................4 Chapter 3. Materials and Methods.................................................................................................11 Chapter 4: Flow Regimes and Infiltration Potential of Streams in Southwestern USA................24 Chapter 5. Variation in Ephemeral Stream Vegetation Along an Aridity Gradient......................41 Chapter 6. Plant Diversity and Biomass Along a Stream Flow Gradient .....................................57 Chapter 7. Riparian and Upland Soil Seed Banks Along an Aridity Gradient..............................73 Chapter 8. Arthropod Diversity Gradients Along Temporary Stream Channels...........................78 Chapter 9. Secondary Production of Terrestrial Macroinvertebrates Along a Gradient of Stream Flow Permanence..................................................................................................84 Chapter 10. Controls of Temporary Stream Flow and Water Presence on Rates of Litter Decomposition and Nutrient Release in Dryland Ecosystems..........................................91 Chapter 11. Conclusions and Implications for Future Research/Implementation............................108 Chapter 12. Literature Cited...............................................................................................................119 ii List of Tables Table 3.1. Catchment characteristics of study sites.......................................................................21 Table 4.1. Percent annual stream flow and water presence at each study reach............................28 Table 4.2. Regressions of percent stream flow and water presence versus precipitation..............29 Table 4.3. Annnual and seasonal stream flow and percent water presence, by stream type........30 Table 4.4. Stream substrate characteristics and potential infiltration at each study reach............31 Table 5.1. Attributes of seven ephemeral study streams..............................................................43 Table 5.2. Percent distribution of plant species by growth form...................................................44 Table 5.3. Diversity measures for herbaceous species of ephemeral streams ..............................45 Table 6.1. Relationships between riparian zone plant species richness and physical variables....60 Table 6.2. Relationships between vegetation abundance and physical variables..........................61 Table 6.3. Relationships between understory richness and cover and overstory abundance........62 Table 7.1 Description of study areas for riparian seed bank study................................................74 Table 8.1. Predictors of α-diversity ..............................................................................................79 Table 8.2. Predictors of b-diversity...............................................................................................80 Table 9.1. Biomass summary table...............................................................................................86 Table 10.1. Effect of water presence on decomposition................................................................94 Table 10.2. Soil characteristics for sites in different flow categories............................................95 Table 10.3. Additional soil characteristics for sites in different flow categories..........................96 Table 11.1. Summary of attributes of stream flow types within Huachuca Mountains..............118 iii List of Figures Fig. 2.1. Conceptual model of processes influencing riparian biota of temporary streams...........10 Fig. 3.1. Study sites in southern Arizona.......................................................................................22 Fig. 3.2. Typical electrical conductivity profile for a runoff event at a monitoring reach............23 Fig. 4.1. Percent annual stream flow and percent annual water presence versus mean annual precipitation and versus stream channel density ...............................................................32 Fig. 4.2. Dendrogram of temporary streams based on percent annual stream flow presence and percent annual water presence....................................................................................33 Fig. 4.3. Box plots of percent annual stream flow, percent annual water presence, and ratio of water presence to stream flow,
Recommended publications
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Chiricahua National Monument
    In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument Open-File Report 2008-1023 U.S. Department of the Interior U.S. Geological Survey National Park Service This page left intentionally blank. In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Chiricahua National Monument By Brian F. Powell, Cecilia A. Schmidt, William L. Halvorson, and Pamela Anning Open-File Report 2008-1023 U.S. Geological Survey Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B.F., Schmidt, C.A., Halvorson, W.L., and Anning, Pamela, 2008, Vascular plant and vertebrate inventory of Chiricahua National Monument: U.S. Geological Survey Open-File Report 2008-1023, 104 p. [http://pubs.usgs.gov/of/2008/1023/]. Cover photo: Chiricahua National Monument. Photograph by National Park Service. Note: This report supersedes Schmidt et al. (2005). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument
    Schmidt, Drost, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2006-1163 Southwest Biological Science Center Open-File Report 2006-1163 November 2006 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument By Cecilia A. Schmidt, Charles A. Drost, and William L. Halvorson Open-File Report 2006-1163 November, 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 Note: This document contains information of a preliminary nature and was prepared primarily for internal use in the U.S. Geological Survey. This information is NOT intended for use in open literature prior to publication by the investigators named unless permission is obtained in writing from the investigators named and from the Station Leader. Suggested Citation Schmidt, C. A., C. A. Drost, and W. L. Halvorson 2006. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument. USGS Open-File Report 2006-1163.
    [Show full text]
  • Musk Thistle
    A Northern Arizona Homeowner’s Guide To Identifying and Managing MUSK THISTLE Common name(s): Musk thistle, nodding thistle Scientific name: Carduus nutans Family: Sunflower or Aster family (Asteraceae) Reasons for concern: This aggressive plant can quickly take over both disturbed and unattended areas, outcompeting native species, reducing native plant diversity and wildlife habitat, and forming huge monocultures. Some studies show that this thistle may have allelopathic (toxic) properties which prevent the growth of nearby plants. They are very difficult to eradicate. Classification: Non-native Musk thistle habit. Image credit: Max Licher, swbiodiversity.org/seinet Botanical description: Tall, sturdy, spiny plant with many branching stems. Leaves: Rosette leaves lance-shaped to oval, dark green with spiny edges that are silvery white to purplish, with spiny margins. Stem leaves dark green with light green midribs, alternate. Spiny wings from leaves extend down stem. Rosette and stem leaves coarsely lobed, usually 1 to 12 inches long and up to 8 inches wide. Upper leaves smaller. Stem(s): Stem has very spiny wings extending from leaves down stem. Stem stout, erect; covered with cobwebby hairs, matted hairs, or almost smooth. Many spreading branches. Stems up to 1 ½ to 6 feet or more. Flowers: Red-purple. Heads are single, at end of stem, solitary, and usually nodding. Flower heads supported by modified leaves called bracts, which are smooth, reddish-purple, pointed and sharp at tip. Outermost bracts bent backwards near middle. Blooms June through September. https://www.nazinvasiveplants.org Seeds: Seed heads topped by plume of feathery white hairs. One plant can produce 10,000 to 100,000 seeds.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • Docket 07-Afc-5
    DOCKET 07-AFC-5 DATE SEP 24 2008 RECD. SEP 24 2008 Ivanpah Solar Electric Generating System (ISEGS) (07-AFC-5) Supplemental Data Response, Set 1D (Responses to: Biological Resources) Submitted to the California Energy Commission Submitted by Solar Partners I, LLC; Solar Partners II, LLC; Solar Partners IV, LLC; and Solar Partners VIII, LLC September 24, 2008 With Assistance from 2485 Natomas Park Drive Suite 600 Sacramento, CA 95833 Introduction Attached are supplemental responses (Set 1D) by Solar Partners I, LLC; Solar Partners II, LLC; Solar Partners IV, LLC; and Solar Partners VIII, LLC (Applicant) to the California Energy Commission (CEC) Staff’s data requests for the Ivanpah Solar Electric Generating System (Ivanpah SEGS) Project (07-AFC-5). These data requests are the result of the workshop discussion held at Primm, Nevada on June 23, 2008.Within each discipline area, the responses are presented in alphabetical order and are numbered for tracking and reference convenience. New graphics or tables are numbered in reference to the Supplemental Data Request number. For example, if a table were used in response to Data Request AQ-1, it would be numbered Table AQ1-1. The first figure used in response to Data Request AQ-1 would be Figure AQ1-1, and so on. AFC figures or tables that have been revised have “R1” following the original number, indicating revision 1. Additional tables, figures, or documents submitted in response to a supplemental data request (supporting data, stand-alone documents such as plans, folding graphics, etc.) are found at the end of a discipline-specific section and may not be sequentially page-numbered consistently with the remainder of the document, though they may have their own internal page numbering system.
    [Show full text]
  • Germination Patterns of a Suite of Semiarid Grassland Forbs from Central New Mexico
    REFEREED RESEARCH Germination patterns of a suite of semiarid grassland forbs from central New Mexico Rosemary L Pendleton and Burton K Pendleton ABSTRACT We examined the germination response of 21 forb species collected from semiarid grasslands of central New Mexico. After-ripened seeds were subjected to 1 of 3 treat - ments: 1) no treatment; 2) a 3-wk stratification at 5 °C (cold-moist treatment); or 3) a 3-wk warm-moist treatment at 30 °C. All seeds were incubated under an alternating 10/20 °C temperature regime for 6 wk following treatment. Temperature regime had a significant effect on 13 of the 21 species. Twelve species responded positively to the warm-moist treatment, germinating during or following 3 wk at 30 °C. Six species were largely nondormant, germinating under all 3 treatment regimes, and 5 species did not germinate to an appreciable degree under any of the 3 treatment regimes. Ten species responded negatively to the 3-wk stratification, and in only one case was germination slightly improved by the 3-wk stratification. A subsequent 12- wk stratification treatment did, however, increase germination for 3 of the 5 dormant species. These results indicate that, while some species may require stratification, many southwestern grassland forbs are adapted to the combination of moisture and temperature associated with a monsoonal regime, that is, a warm-moist period. Sum - mer, rather than fall, sowing is recommended as it will provide the benefit of dor - mancy-breaking dry heat followed by warm-moist conditions of the July to Septem - ber monsoon. Pendleton RL, Pendleton BK.
    [Show full text]
  • Microfilms International 300 N
    BIOCHEMICAL CHARACTERISTICS OF CUCURBITACEAE SALT-SOLUBLE PROTEINS. Item Type text; Dissertation-Reproduction (electronic) Authors AL-KANHAL, MOHAMAD AHMAD. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 12:40:04 Link to Item http://hdl.handle.net/10150/186471 INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. I. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacen t frame.
    [Show full text]
  • Proceedings of the Fifth Biennial Conference of Research on The
    Reframing the Grazing Debate: Evaluating Ecological Sustainability and Bioregional Food Production Matthew R. Loeser1 Thomas D. Sisk1 Timothy E. Crews2 Kurt Olsen1 Craig Moran1 and Christina Hudenko1 1Center for Environmental Sciences and Education Northern Arizona University PO Box 5694 Flagstaff, AZ 86011-5694 2Environmental Studies Program Prescott College 220 Grove Avenue Prescott, AZ 86301 Abstract. The semi-arid grasslands of the Colorado Plateau are productive, diverse, and extensive ecosystems. The majority of these ecosystems have been altered by human land use, primarily through the grazing of domestic livestock, yielding a plethora of environ- mental and social consequences that are tightly interconnected. From an agroecological perspective, untangling these issues requires both an understanding of the role of livestock grazing in bioregional food production and the effect of that grazing on ecological sustainability. To address the former, we discuss the importance of cattle ranching as a bioregional food source, including estimates of meat production and water use in Arizona. To address the latter, we present data from a long-term project addressing changes in native plant community composition, under a range of alternative livestock management strate- gies. Our study site near Flagstaff, AZ includes four different management treatments: (1) conventional low-intensity, long-duration grazing rotations; (2) high-intensity, short-dura- tion rotations; (3) very high-impact, very short-duration grazing (to simulate herd impact); and, (4) livestock exclosure. Preliminary results suggest belowground properties are re- sponding more quickly to grazing treatments than aboveground properties. Particular Email: Matthew R. Loeser, [email protected] 3 4 REFRAMING THE GRAZING DEBATE response variables, such as cyanobacteria and diatoms, show a marked short-term response to very high-impact, short-duration grazing, but long-term implications are as yet un- known.
    [Show full text]
  • Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations
    sustainability Article Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations Heather E. Schier 1, Kathrin A. Eliot 1, Sterling A. Herron 2 , Lauren K. Landfried 1, Zoë Migicovsky 3 , Matthew J. Rubin 4 and Allison J. Miller 2,4,* 1 Department of Nutrition and Dietetics, Saint Louis University, 3437 Caroline Street, St. Louis, MO 63104, USA; [email protected] (H.E.S.); [email protected] (K.A.E.); [email protected] (L.K.L.) 2 Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA; [email protected] 3 Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; [email protected] 4 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; [email protected] * Correspondence: [email protected] Received: 15 April 2019; Accepted: 10 May 2019; Published: 15 May 2019 Abstract: Long-term agricultural sustainability is dependent in part on our capacity to provide productive, nutritious crops that minimize the negative impacts of agriculture on the landscape. Perennial grains within an agroforestry context offers one solution: These plants produce large root systems that reduce soil erosion and simultaneously have the potential to produce nutrients to combat malnutrition. However, nutrient compositions of wild, perennial, herbaceous species, such as those related to the common bean (Phaseolus vulgaris) are not well known. In this study, seed ion and amino acid concentrations of perennial and annual Phaseolus species were quantified using ionomics and mass spectrometry. No statistical difference was observed for Zn, toxic ions (e.g., As) or essential amino acid concentrations (except threonine) between perennial and annual Phaseolus species.
    [Show full text]
  • Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations ​ ​
    bioRxiv preprint doi: https://doi.org/10.1101/612010; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Comparative analysis of perennial and annual Phaseolus seed nutrient concentrations ​ ​ 1 1 2 1 Heather E. Schier ,​ Kathrin A. Eliot ,​ Sterling A. Herron ,​ Lauren K. Landfried ,​ Zoë ​ 3 ​ 4 ​ 2,4 ​ Migicovsky ,​ Matthew J. Rubin ,​ and Allison J. Miller ​ ​ ​ 1 Saint​ Louis University, Department of Nutrition and Dietetics, 3437 Caroline Street, St. Louis, MO 63104, USA. 2 Saint​ Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, MO 63103, USA. 3 Dalhousie​ University, Department of Plant and Animal Sciences, Faculty of Agriculture, Truro, Nova Scotia, B2N 5E3, Canada 4 Donald​ Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/612010; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Malnutrition is a global public health concern and identifying mechanisms to elevate the nutrient output of crops may minimize nutrient deficiencies. Perennial grains within an agroforestry context offers one solution. The development and integration of perennial crops for food has critically influenced dialogue on the ecological intensification of agriculture and agroforestry.
    [Show full text]