STIX 371360 1 En Bookback

Total Page:16

File Type:pdf, Size:1020Kb

STIX 371360 1 En Bookback Index A Biology, 229 Abrams & Strogatz model, 353 Bipolar plates, 225 Active sites, 205 Blackouts, 404 Activity, 218 Blood-brain Barrier (BBB), 98, 112 Adaptive dynamics, 335, 337–340 Boltzmann distribution, 161 Adsorbents, 210 Bone, 213 Adsorption, 180 Boundary conditions, 212 Adsorption isotherm, 182 Bovine Serum Albumin (BSA), 107 Advection, 17, 83 Brain, 93 AFM, 76, 79, 80 Brogniard, Adolphe, 134 Agent-based model, 22, 335 Broken detailed balance, 141 Agriculture, 320, 329 Broken symmetries, 143 Albatross, 51 Brownian motion, 31, 53, 128, 233 Allee effect, 37 Brownian motor, 149 Ambrosia artemisiifolia (common ragweed), 42 Brownian pump, 149 Amorphization, 272 Brownian thermospectrometry, 133 Amorphous, 268 Brown, Robert, 134 Anisotropic Geometries, 249 Bulk current, 152 Anomalous diffusion, 106 Bulk flow, 98 Anthropocene, 333 Bumblebee, 60 Apparent Diffusion Coefficient (ADC), 239 Buoyancy, 119 Arrhenius law, 268 Burger's turbulence, 158 Asymmetric simple exclusion process, 148 Atmosphere, 115 C Atmospheric stratification, 119 Ca2+ ions, 109 Attenuation, 174 Carrying capacities, 355 Autothermal reforming of methane, 223 Cascading failures, 397, 404 Average value, 117 Catalysis, 171, 191 Catalyst pellets, 206 B Cellular automaton, 22 Basic reproduction ratio, 378 Cellular grids, 195 Basic research, 299 Central limit theorem, 50, 51, 58 Bethe ansatz, 154 generalized, 50, 59 Bidisperse, 220 Centre-of-mass diffusivity, 199 Bilingual, 357–359, 365, 371 Ceramics, 261 Bilingualism, 361, 363 Chains, 270 Bimodal, 220 Characteristic traits, 337–340, 342, 343 Binding, 234, 246 Chemical conversions, 20 Biological organisms, 212 Chemical engineering, 229 © Springer International Publishing AG 2018 411 A. Bunde et al. (eds.), Diffusive Spreading in Nature, Technology and Society, https://doi.org/10.1007/978-3-319-67798-9 412 Index Chemical potential, 18, 181 Dead-space microdomains, 105 Chondroitin sulfate, 108 Demic diffusion, 320, 323, 326, 343–345, 347 City infrastructure, 403 Density fluctuation, 149 Climate change, 34 Density functional theory, 166 CO2, 72, 74 Density oscillation, 162 Coarse-graining, 131 Density profile, 155 Coefficient of self-diffusion, 13 Dependency Links, 399, 401 Co-evolution, 304 Deposition of emitted substance, 119 Coexistence, 355, 358, 364, 365 Desiccation, 72 Cold Brownian motion, 143 Desorption, 180 Community structure, 403 Detailed balance, 129, 140 Complexity, 212 Detailed balance, violated, 143 Complex networks, 398 Determinism, 32 Complex systems, 398 Dextran, 107 Computer simulations, 133 Diffusion, 31, 172, 205 Concentration distribution, 116 anomalous, 60 Concentration gradient, 156 chamber, 77–79 Concentrations of pollutants, 119 Diffusion coefficient, 318, 355, 359, 380 Concerntric pattern, 382 Diffusion constant, 158 Conditional probability, 152 Diffusion current, 156 Configurational diffusion, 205 Diffusion ellipsoid, 254 Conformation, 270 Diffusion equation, 130 Consequentialist approach, 303 Diffusion in networks, 398 Conspecifics, 190 Diffusion matrix, 189 Constrained exponential growth, 280 Diffusion path, 13 Continuity, 32 Diffusion propagator, 249 Continuity equation, 16, 83 Diffusion-reaction models, 359 Continuous chimney emission, 118 Diffusion-reaction system, 354 Continuum models, 207 Diffusion tensor, 253 Control parameter, 153 Diffusion Tensor Imaging (DTI), 252 Convection, 17 Diffusion Weighted Imaging (DWI), 252 Convection-enhanced delivery, 112 Diffusive diffraction, 250 Convective flow, 205 Diffusivity, 14, 130, 207, 266 Converging technologies, 300 Diglossia, 364, 368, 371 Conversion, 191 Discrete models, 207 Cooperative, 269 Discretization, 32 Correlation, 63 Disease dynamic, 377 Co-transport, 79, 90 Dislocations, 271 Coulomb scattering, 137 Dispersal, 29, 371 Covariance, 63 mode of, 30 Creep, 265 pattern, 30 Critical micelle concentration, 243 Dispersal kernel, 356, 363 Crystallization, 268, 269 Dissipation, 141 Cultural diffusion, 321, 323, 329, 343–345, Distributed plumes, 120 347 Distribution Cultural transmission, 325 posterior, 44 Current-density relation, 152 prior, 44 Cuticle, 72 Distribution function, 197 Cutin, 72 Domain wall, 148 Cyborgs, 298 DOSY, 248 Drift current, 156 D Driven diffusion, 149 Darcy’s law, 18, 209 Driven lattice gas, 148 Deactivation of the catalyst by fouling, 223 Driving force, 18 Index 413 Driving force of diffusion, 181 Fast-equilibrium reaction, 110 Drug delivery, 112 Fast exchange, 195 Dynamic equilibrium, 179 Fast transport, 219 Dynamic imaging, 175 Fermi's golden rule, 165 Dystopia, 302 Ferrierite, 178 Feynman, Richard, 127 E Fiber Tracking Mapping, 252 Ebola, 375 Fibonacci sequence, 149 Ecological niche, 30, 34 Fibonacci's model, 36 Ecosystem, 45 Fick, Adolf, 136 Effectiveness factor, 193, 218 Fick's laws, 116, 129 Effective one-dimensional model, 220 Fick’s 1st law, 14, 179 Effective temperature, 132 Fick’s 2nd law, 16, 99, 179 EHEC outbreak, 394 Financial networks, 407 Einstein, Albert, 127, 128 Finger-printing, 177 Einstein’s diffusion equation, 17 First-order phase transition, 157 Ejection rate, 165 Fitness gradient, 338 Electro-catalysis, 227 Fitness landscape, 339 Electrodes, 225 Fixed-bed reactor, 206 Electron micrographs, 107 Flow channels, 226 Electrophoretic mobilities, 247 Fluctuating force, 22 Electrophoretic NMR, 247 Fluctuation-dissipation relation, 129, 140 Emergence, 56, 66 Fluctuation theorem, 140–142 Enabling technologies, 297 Fluorescence correlation spectroscopy, 138 Energy, 148 Focal plane array detector, 176 English-Gaelic shift, 354, 371 Foraging, 49, 53, 61 Entropy, 45, 148 Fourier, Jean-Babtiste Joseph, 136 Entropy production, 140, 141, 143 Fourier’s law, 179 Environmental conditions, 23 Fractal, 130, 211 Epi-curve, 386 Fractal dimension, 216 Epicuticular, 71, 75, 76, 79, 81, 82, 85–88, 90 Fractal distributor, 216, 228 Epidemic arrival time, 382 Fractal geometry, 216 Epidemic wavefront, 380 Fractal pattern, 382 Epidermis, 72 Fractional loading, 184 Equal hydraulic path lengths, 226 Free energy, 148 Equilibrium, 33 Frequentist interpretation of probability, 43 Equilibrium dissociation constant, 110 Frictional force, 182 Ergodicity, 200 Friction coefficient, 22 Evaporation, 80 Front, 319, 322, 324, 325 Evolution, 71 Exchange, 246 G Exchange probabilities, 195 Gaelic-English language shift, 365 Exponential growth, 319 Gas diffusion layers, 225 Extinct, 354 Gaussian, 197 Extinction, 355, 361, 363, 365, 370 Gaussian white noise, 22 Extracellular matrix, 94, 108 Generalized Einstein relation, 132 Extracellular space, 94 Generalized Linear Model, 34 Glauber rates, 160 F GLEAM, 388 Failure spreading, 397, 406 Glia, 93 Farmers, 320, 325, 329 Globalization, 352 Farming, 313, 320 Glymphatic, 98 414 Index Golden mean, 149 Infestation probability, 23 Gold nanoparticle, 136 Infestation spreading, 23 Grand stories, 292 Influenza H1N1 pandemic, 383 Grape berry morphology, 256 Infrastructure, 397 Great American Interchange, 29 Injection rate, 165 Grid cells, 24 Innovation process, 287, 298 Growth Innovation stories, 296 bounded, 36 Instantaneous source, 117 Malthusian (unbounded), 36 Integrative Optical Imaging (IOI) method, 107 Growth rate, 19, 36 Intentional design, 291 Interdependence, 399 H Interdependent networks, 397, 401, 402, 408 Habitat, 21, 180 Interfaces, 271 Hahn spin-echo, 239 Interference Microscopy (IFM), 176, 251 Heat of adsorption, 195 Intergenerational transmission, 370 Heat reservoir, 160 Intermittency, 57 Heparan sulfate, 108 Interparticle interactions, 234 Heparin, 109 Interstitial, 267 Hermeneutic approach, 303 Interstitial space, 94 Hermeneutic circle, 304 Intervention, 364, 369, 371 Hetero-diffusion, 263 Invasive species, 31 Hierarchical channel system, 219 Inversion, 120 Hierarchical design, 214 Ion pump, 167 Hierarchically structuring, 213 Ion-selective Microelectrode (ISM), 101 Hierarchical network, 214 Iontophoretic release, 100 High-density phase, 154 IR Microscopy (IRM), 176, 251 High-frequency pulses, 174 Irreversible thermodynamics, 183 Homogeneity, 32 Ising model, 161 Homogeneous, 262 Isomers, 242 Horizontal homogeneity, 121 Isotope, 262 Host-guest systems, 173 Isotropy, 32 Hot Brownian motion, 128, 131 Hot Brownian particle, 130 J Hot Brownian swimmer, 128, 142 Jamming, 147 Hot Brownian thermometry, 133 Janus particle, 136 Hot microswimmer, 134 Joint probability, 150 Human enhancement, 301 Jump length, 195 Human vascular network, 217 Humidity, 71, 72, 84, 89 K Hunter-gatherers, 325 Kärger equations, 247 Hunting-gathering, 313 Kepler ratio, 149 Hyaluronan, 108 Kernel, 321, 324 Hydraulic conductivity, 84 Kinetic Monte Carlo simulation, 157 Hydrodynamic memory, 139 Knudsen diffusion, 205 Hydrogenation, 191 Hydrogenation of benzene to cyclohexane, 224 L Hydrogen bonded environment, 242 Lactoferrin, 109 Hydrophobic, 72 Langevin equation, 22, 65, 135 Language diffusion principle, 357 I Language inheritance principle, 357 Ideal Fermi gas, 165 Language shift, 351 Immunoglobulin G (IgG), 107 Laplacian, 380 Incompressible fluid, 117 Leaf, 219 Infection, 381 Leptokurtic, 40 Index 415 Lèvy, 49 Memory, 63, 197 Environmental Hypothesis, 56, 66 MERS, 375 flight, 49, 58 Mesolithic, 313 hypothesis, 40, 49, 52, 66 Mesopore, 195, 206 paradigm, 54, 56, 66 Mesoporous deNOx catalyst, 222 motion, 49, 53, 58 Mesoporous Ni/Al2O3 catalyst, 223 noise, 59 Mesopotamia, 180 Search Hypothesis, 56, 66 Mesoscopic, 131 stable distribution, 49, 58 Metals, 261, 264 walk, 52, 59 Metapopulation, 384 truncated, 52 Metapopulation models, 41 Light scattering, 137 Metastable, 268 Likelihood, 43 Micelles, 243 Linearity, 32 Microimaging, 176
Recommended publications
  • Micromachined Linear Brownian Motor: Transportation of Nanobeads by Brownian Motion Using Three-Phase Dielectrophoretic Ratchet Ersin ALTINTAS , Karl F
    Japanese Journal of Applied Physics Vol. 47, No. 11, 2008, pp. 8673–8677 #2008 The Japan Society of Applied Physics Micromachined Linear Brownian Motor: Transportation of Nanobeads by Brownian Motion Using Three-Phase Dielectrophoretic Ratchet à Ersin ALTINTAS , Karl F. BO¨ HRINGER1, and Hiroyuki FUJITA Center for International Research on Micro-Mechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan 1Department of Electrical Engineering, The University of Washington, Box 352500, 234 Electrical Engineering/Computer Science Engineering Building, Seattle, WA 98195-2500, U.S.A. (Received June 20, 2008; revised August 7, 2008; accepted August 15, 2008; published online November 14, 2008) Nanosystems operating in liquid media may suffer from random Brownian motion due to thermal fluctuations. Biomolecular motors exploit these random fluctuations to generate a controllable directed movement. Inspired by nature, we proposed and realized a nano-system based on Brownian motion of nanobeads for linear transport in microfluidic channels. The channels limit the degree-of-freedom of the random motion of beads into one dimension, which was rectified by a three-phase dielectrophoretic ratchet biasing the spatial probability distribution of the nanobead towards the transportation direction. We micromachined the proposed device and experimentally traced the rectified motion of nanobeads and observed the shift in the bead distribution as a function of applied voltage. We identified three regions of operation; (1) a random motion region, (2) a Brownian motor region, and (3) a pure electric actuation region. Transportation in the Brownian motor region required less applied voltage compared to the pure electric transport.
    [Show full text]
  • Brownian(Mo*On(
    Brownian(Mo*on( Reem(Mokhtar( What(is(a(Ratchet?( A(device(that(allows(a(sha9(to(turn(only(one(way( hLp://www.hpcgears.com/products/ratchets_pawls.htm( Feynman,(R.(P.,(Leighton,(R.(B.,(&(Sands,(M.(L.((1965).(The$Feynman$Lectures$on$Physics:$ Mechanics,$radia7on,$and$heat((Vol.(1).(AddisonKWesley.( Thermodynamics( 2nd(law,(by(Sadi(Carnot(in(1824.( ( • Zeroth:(If(two(systems(are(in(thermal(equilibrium(with( a(third(system,(they(must(be(in(thermal(equilibrium( with(each(other.(( • First:(Heat(and(work(are(forms(of(energy(transfer.( • Second:(The(entropy(of(any(isolated(system(not(in( thermal(equilibrium(almost(always(increases.( • Third:(The(entropy(of(a(system(approaches(a(constant( value(as(the(temperature(approaches(zero.( ( hLp://en.wikipedia.org/wiki/Laws_of_thermodynamics( Why(is(there(a(maximum(amount(of(work( that(can(be(extracted(from(a(heat(engine?( • Why(is(there(a(maximum(amount(of(work(that( can(be(extracted(from(a(heat(engine?( • Carnot’s(theorem:(heat(cannot(be(converted( to(work(cyclically,(if(everything(is(at(the(same( temperature(!(Let’s(try(to(negate(that.( The(Ratchet(As(An(Engine( Ratchet,(pawl(and(spring.( The(Ratchet(As(An(Engine( Forward rotation Backward rotation ε energy to lift the pawl ε energy to lift the pawl ε Lθ work done on load θ ε + Lθ energy to rotate wheel θ Lθ work provided by load by one tooth f 1 L / − −(ε+ θ ) τ1 ε + Lθ energy given to vane L fB = Z e Boltzmann factor for work provided by vane b −1 −ε /τ2 f fB = Z e Boltzmann factor for ν fB ratching rate with ν T2 T2 attempt frequency tooth slip ν f b slip rate with f fL power delivered B ν B θ attempt frequency ν ε energy provided to ratchet T1 T1 Equilibrium and reversibility Ratchet Brownian motor b f ε+ Lθ ε ratching rate = slip rate f f τ1 − − B = B f b Leq θε= −1 τ1 τ2 Angular velocity of ratchet: Ω =θν (fB − fB )= θν e − e τ 2 Reversible process by increasing the ε ε load infinitesimally from equilibrium − − ΩL=0 →θν e τ1 − e τ 2 Leq.
    [Show full text]
  • Movements of Molecular Motors: Diffusion and Directed Walks
    Movements of Molecular Motors: Diffusion and Directed Walks Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Theoretische Physik eingereicht an der Mathematisch{Naturwissenschaftlichen Fakult¨at der Universit¨at Potsdam angefertigt am Max{Planck{Institut fur¨ Kolloid- und Grenzfl¨achenforschung in Golm von Stefan Klumpp geboren am 29. September 1973 in Waiblingen Potsdam, im April 2003 Zusammenfassung Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechsel- spiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden L¨osung gekennzeichnet. Diese eigentumlichen¨ Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. Im einzelnen werden vier Transportph¨anomene untersucht: (i) Random Walks von einzel- nen Motoren in Kompartimenten verschiedener Geometrien, (ii) station¨are Konzentrations- profile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen, (iii) randinduzierte Phasenuberg¨ ¨ange in offenen r¨ohrenartigen Kompartimenten, die an Motoren- reservoirs gekoppelt sind, und (iv) der Einfluß von kooperativen Effekten bei der Motor{ Filament-Bindung auf die Bewegung. Alle diese Ph¨anomene sind experimentell zug¨anglich, und m¨ogliche experimentelle Realisierungen werden diskutiert. Abstract Movements of processive
    [Show full text]
  • Brownian Motors
    adp header will be provided by the publisher Brownian motors Peter Hanggi¨ ∗1, Fabio Marchesoni2, and Franco Nori3,4 1 Universit¨at Augsburg, Institut f¨ur Physik, Universit¨atsstrasse 1, 86135 Augsburg, Germany 2 Dipartimento di Fisica, Universit`adi Camerino, 62032 Camerino, Italy 3 Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan 4 Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109- 1120, USA Key words Brownian motors, Brownian motion, statistical physics, noise-induced transport PACS 05.40.-a, 05.66.-k, 05.70.Ln, 82.20.-w, 87.16.-b In systems possessing a spatial or dynamical symmetry breaking thermal Brownian motion combined with unbiased, non-equilibrium noise gives rise to a channelling of chance that can be used to exercise control over systems at the micro- and even on the nano-scale. This theme is known as “Brownian motor” concept. The constructive role of (the generally overdamped) Brownian motion is exemplified for a noise-induced transport of particles within various set-ups. We first present the working principles and characteristics with a proof-of-principle device, a diffusive temperature Brownian motor. Next, we consider very recent applications based on the phenomenon of signal mixing. The latter is particularly simple to implement experimentally in order to optimize and selectively control a rich variety of directed transport behaviors. The subtleties and also the potential for Brownian motors operating in the quantum regime are outlined and some state-of-the-art applications, together with future roadways, are presented.
    [Show full text]
  • On Brownian Motion of Asymmetric Particles an Application As Molecular Motor
    Diploma Thesis On Brownian motion of asymmetric particles An application as molecular motor MARTIN REICHELSDORFER May 2010 Institut f¨urTheoretische Physik I Prof. Dr. Klaus Mecke Friedrich-Alexander Universit¨atErlangen-N¨urnberg Zusammenfassung Asymmetrische Brownsche Teilchen k¨onnenunter Nichtgleichgewichtsbedingungen eine im Mittel ge- richtete Bewegung ausf¨uhren. Dies kann zur Konstruktion molekularer Motoren genutzt werden. Die vorliegende Arbeit befasst sich mit der Erweiterung und Analyse eines biologisch inspirierten Modells, welches von Susan Sporer et al. [42] eingef¨uhrt wurde. Aufgrund der oft sehr allgemeinen und abstrakten Darstellung sind die Betrachtungen jedoch auch im weiter gefassten Kontext der generellen Brownschen Bewegung asymmetrischer Objekte relevant. Das Modell besteht aus einem asymmetrischen zweidimensionalen K¨orper, der sich entlang einer Schiene in einem zweidimensionalen, unendlich ausgedehnten idealen Gas bewegt. Durch vor¨uber- gehendes Verlangsamen an Stoppstellen wird der Motor bzw. das zugeh¨origestatistische Ensemble aus dem Gleichgewicht gebracht. Anhand des Beispiels eines parabolischen Potentials mit exponentiell abfallender Federkonstante wird gezeigt, dass sich diese Bindungspl¨atzedurch zeitlich ver¨anderliche Potentialmulden darstellen lassen. Ahnlich¨ der K¨uhlung eines Gases durch Expansion, f¨uhrtdieser Ausschaltevorgang zu einer Verschm¨alerungder Geschwindigkeitsverteilung. Haupts¨achlich w¨ahrend der darauffolgenden Relaxation erh¨altdie zuf¨alligeBewegung eine Vorzugsrichtung bis sich erneut die Gleichgewichtsverteilung einstellt. Ein einmaliges L¨osendes Motors aus einer Stoppstelle erweist sich im betrachteten Beispiel als eher ineffizient, in dem Sinne dass die Breite der Ortsverteilung stets deutlich gr¨oßerals die Verschiebung ihres Mittelwertes ist. Durch periodische Anordnung der Bindungspl¨atzejedoch kann eine effektive Gleichrichtung der Bewegung erreicht werden, da eine Equilibrierung des Systems verhindert wird und sich stattdessen ein station¨arerNichtgleichgewichts- zustand einstellt.
    [Show full text]
  • On Control of Transport in Brownian Ratchet Mechanisms
    Journal of Process Control 27 (2015) 76–86 Contents lists available at ScienceDirect Journal of Process Control j ournal homepage: www.elsevier.com/locate/jprocont On control of transport in Brownian ratchet mechanisms a,∗ a b a Subhrajit Roychowdhury , Govind Saraswat , Srinivasa Salapaka , Murti Salapaka a Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, 2-270 Keller Hall, Minneapolis, MN 55455, USA b Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA a r t i c l e i n f o a b s t r a c t Article history: Engineered transport of material at the nano/micro scale is essential for the manufacturing platforms of Received 1 April 2014 the future. Unlike conventional transport systems, at the nano/micro scale, transport has to be achieved Received in revised form in the presence of fundamental sources of uncertainty such as thermal noise. Remarkably, it is possible 15 September 2014 to extract useful work by rectifying noise using an asymmetric potential; a principle used by Brownian Accepted 26 November 2014 ratchets. In this article a systematic methodology for designing open-loop Brownian ratchet mechanisms Available online 23 December 2014 that optimize velocity and efficiency is developed. In the case where the particle position is available as a measured variable, closed loop methodologies are studied. Here, it is shown that methods that strive Keywords: to optimize velocity of transport may compromise efficiency. A dynamic programming based approach Flashing ratchet is presented which yields up to three times improvement in efficiency over optimized open loop designs Stochastic systems Dynamic programming and 35% better efficiency over reported closed loop strategies that focus on optimizing velocities.
    [Show full text]
  • Multiple Current Reversals Using Superimposed Driven Lattices
    applied sciences Article Multiple Current Reversals Using Superimposed Driven Lattices Aritra K. Mukhopadhyay 1 and Peter Schmelcher 1,2,* 1 Zentrum für Optische Quantentechnologien, Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; [email protected] 2 The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany * Correspondence: [email protected] Received: 17 January 2020; Accepted: 12 February 2020; Published: 17 February 2020 Abstract: We demonstrate that directed transport of particles in a two dimensional driven lattice can be dynamically reversed multiple times by superimposing additional spatially localized lattices on top of a background lattice. The timescales of such current reversals can be flexibly controlled by adjusting the spatial locations of the superimposed lattices. The key principle behind the current reversals is the conversion of the particle dynamics from chaotic to ballistic, which allow the particles to explore regions of the underlying phase space which are inaccessible otherwise. Our results can be experimentally realized using cold atoms in driven optical lattices and allow for the control of transport of atomic ensembles in such setups. Keywords: directed transport; current reversal; optical lattice; cold atoms; control of chaos; chaotic transport 1. Introduction Originally conceived as a proof of principle behind the working of biological motors [1–4], the phenomenon of ‘ratchet’ transport of particles, i.e., the emergence of unidirectional particle transport in an unbiased non-equilibrium environment, has gained widespread applications across various disciplines [2,5–14]. The necessary ingredients required for such a rectification of random particle motion into directed transport has been shown to be non-equilibrium, non-linearity and the breaking of certain spatio-temporal symmetries [7,15,16].
    [Show full text]
  • Stochastic Processing for Enhancement of Artificial Insect Vision
    Þ,1.o2 Stochastic Process¡ng for Enhancement of Artificial lnsect Vision by Gregory P. Harmer B.Sc. (Applied Maths & Computer Science), Adelaide University, Australia, 1996 B.E. (First Class Honours), Adelaide University, Australia, 1997 Thesis submitted for the degree of Doctor of Philosophy tn Department of Electrical and Electronic Engineering, Faculty of Engineering, Computer and Mathematical Sciences Adelaide University, Australia November, 2001 CBME @ 2001 ADELAIDE UNIVERSITY Gregory P. Harmer AUSTRALIA Cøto ftr Bion¡dlc¡l r"ñæino Àtll¡irlD U¡¡wity All Rights Reserved Contents Heading Page Contents t¡t Abstract tx Statement of Originality x¡ Acknowledgments xilt Publications xv List of Figures xvii List of Tables xx¡t¡ Chapter 1. lntroduction and Motivation 1 1.L Thesis Layout 2 L.2 Introduction 3 1.3 Background 4 L.3.1 Motion Detection . 6 1..4 Motivation 7 1.4|1, Millimetre Wave Antenna Array 9 L.5 StochasticProcessing 12 L.5.1 BrownianRatchets 12 1,.5.2 Stochastic Resonance 13 1,.6 Current State of Knowledge 1.4 L.7 Original Contributions 15 Chapter 2. Brownian Ratchets t7 2.1, Brownian Motion L8 Page iii Contents 2.2 Rectifying Brownian Motion . 19 Laws 2.2.L of Thermodynamics . 20 2.2.2 Ratchet and Pawl Device 2L 2.2.3 Maxwell's Demon 24 2.2.4 Utilising Thermal Fluctuations 27 2.3 Brownian tchets 28 2.3.7 FlashingRatchets 30 A 2.3.2 Very Brief Review 31 2.3.3 Examples of Ratchets . 31 2.4 Summary 35 Chapter Parrondo's 3. Games 37 Introduction 3.1 38 Construction 3.2 and Characteristics 39 3.2.7 Construction of the Games 39 3.2.2 Playing the Games 47 3.2.3 Faimess 41 3.2.4 Distributions and Behaviour 45 3.2.5 MixingStrategies 47 3.2.6 Explanation of the Games 49 3.2.7 Observations 52 3.3 Analysis of the Games 54 Discrete-Time 3.3.1 Markov-Chains (DTMCs) 54 3.3.2 Modelling the Games as DTMCs 57 3.3.3 Constraints of Parrondo's Games .
    [Show full text]
  • Negative Conductance in Two Finite-Size Coupled Brownian Motor
    Negative conductance in two finite-size coupled Brownian motor models ∗ Ryoichi Kawai† Adam Marcus‡ August, 2000 Abstract We examine two different models of interactive Brownian particles im- mersed in a symmetric, periodic potential. The first model extends the coupled Brownian motor examined in H¨anggi et al. [3], differing by its consideration of non-homogeneous noise-strength coefficients. The second model contrasts the first in its use of an inversely proportional interaction between particles. The observed properties include true negative conduc- tance appearing in each of the two models with the objective of finding the smallest system size exhibiting this property. 1 Introduction With the contemporary push in miniaturization, a new level of importance has been placed on the study of nanosystems and their potential roles in technology. The concept of negative conductance, while still fairly new, has already found its way into various scientific disciplines: biomolecular research in the form of active transport [2], molecular chemistry as a tool in particle separation [1], and theoretical physics accompanying the theory of Brownian motors [3]. In this paper, we examine two models of coupled Brownian particles, utilizing Monte Carlo simulation techniques on a periodic Langevin equation. We study the effects of a position-dependent multiplicative noise source used in previous ex- periments [4], a constant torque-induced velocity ω, and an interaction between particles. Furthermore, since the stochastic and interactive forces are symmetric in both models, ω represents the only cumulative force on the system. Thus the flow of motion is initiated by a force moving in the opposite direction, making the system both counterintuitive and worthy of investigation.
    [Show full text]
  • Artificial Brownian Motors: Controlling Transport on the Nanoscale
    Artificial Brownian motors: Controlling transport on the nanoscale Peter H¨anggi1, 2, ∗ and Fabio Marchesoni3, 4, y 1Institut f¨urPhysik, Universit¨atAugsburg, Universit¨atsstr.1, D-86135 Augsburg, Germany 2Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 3Dipartimento di Fisica, Universit`adi Camerino, I-62032 Camerino, Italy 4School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea (Dated: September 24, 2008) In systems possessing spatial or dynamical symmetry breaking, Brownian motion combined with unbiased external input signals, deterministic or random, alike, can assist directed motion of particles at the submicron scales. In such cases, one speaks of \Brownian motors". In this review the constructive role of Brownian motion is exemplified for various physical and technological setups, which are inspired by the cell molecular machinery: working principles and characteristics of stylized devices are discussed to show how fluctuations, either thermal or extrinsic, can be used to control diffusive particle transport. Recent experimental demonstrations of this concept are surveyed with particular attention to transport in artificial, i.e. non-biological nanopores and optical traps, where single particle currents have been first measured. Much emphasis is given to two- and three-dimensional devices containing many interacting particles of one or more species; for this class of artificial motors, noise rectification results also from the interplay of particle Brownian motion and geometric constraints. Recently, selective control and optimization of the transport of interacting colloidal particles and magnetic vortices have been successfully achieved, thus leading to the new generation of microfluidic and superconducting devices presented hereby.
    [Show full text]
  • Brownian Motors: Noisy Transport Far from Equilibrium
    Physics Reports 361 (2002) 57–265 www.elsevier.com/locate/physrep Brownian motors:noisy transport far from equilibrium Peter Reimann Institut fur Physik, Universitat Augsburg, Universitatsstr. 1, 86135 Augsburg, Germany Received August 2001; Editor:I : Procaccia Contents 1. Introduction 59 4.6. Biological applications:molecular 1.1. Outline and scope 59 pumps and motors 130 1.2. Historical landmarks 60 5. Tilting ratchets 133 1.3. Organization of the paper 61 5.1. Model 133 2. Basic concepts and phenomena 63 5.2. Adiabatic approximation 133 2.1. Smoluchowski–Feynman ratchet 63 5.3. Fast tilting 135 2.2. Fokker–Planck equation 67 5.4. Comparison with pulsating ratchets 136 2.3. Particle current 68 5.5. Fluctuating force ratchets 137 2.4. Solution and discussion 69 5.6. Photovoltaic e5ects 143 2.5. Tilted Smoluchowski–Feynman ratchet 72 5.7. Rocking ratchets 144 2.6. Temperature ratchet and ratchet e5ect 75 5.8. In=uence of inertia and Hamiltonian 2.7. Mechanochemical coupling 79 ratchets 148 2.8. Curie’s principle 80 5.9. Two-dimensional systems and entropic 2.9. Brillouin’s paradox 81 ratchets 150 2.10. Asymptotic analysis 82 5.10. Rocking ratchets in SQUIDs 152 2.11. Current inversions 83 5.11. Giant enhancement of di5usion 154 3. General framework 86 5.12. Asymmetrically tilting ratchets 156 3.1. Working model 86 6. Sundry extensions 159 3.2. Symmetry 90 6.1. Seebeck ratchets 160 3.3. Main ratchet types 91 6.2. Feynman ratchets 162 3.4. Physical basis 93 6.3. Temperature ratchets 164 3.5.
    [Show full text]
  • On Mathematical Foundation of the Brownian Motor Theory
    On mathematical foundation of the Brownian motor theory. L. Koralov,∗ S. Molchanov,y B. Vainbergz Abstract The paper contains mathematical justification of basic facts concerning the Brownian motor theory. The homogenization theorems are proved for the Brownian motion in periodic tubes with a constant drift. The study is based on an applica- tion of the Bloch decomposition. The effective drift and effective diffusivity are expressed in terms of the principal eigenvalue of the Bloch spectral problem on the cell of periodicity as well as in terms of the harmonic coordinate and the density of the invariant measure. We apply the formulas for the effective parameters to study the motion in periodic tubes with nearly separated dead zones. Keywords. Brownian motors, diffusion, effective drift, effective diffusivity, Bloch decomposition. AMS MSC. 35Q92, 35Q70, 35K10. 1 Introduction The paper is devoted to mathematical theory of Brownian (molecular) motors. The concept of a Brownian motor has fundamental applications in the study of transport processes in living cells and (in a slightly different form) in the porous media theory. There are thousands of publications in the area of Brownian motors in the applied literature. For example, the review by P. Reimann [16] contains 729 references. Most of these publications are in physics or biology journals and are not mathematically rigorous (although many of them are based on the mathematical model described below, see, for example [4], [5], [10], [20]). Some of them are based on numerical computations. Consider a set of particles with an electrical charge performing Brownian motion in a tube Ω with periodic (or stationary random) cross section (see Fig.
    [Show full text]