October 1993 $3.95

Total Page:16

File Type:pdf, Size:1020Kb

October 1993 $3.95 OCTOBER 1993 $3.95 Is Los Angeles winning the war on smog? Computers that mimic damaged brains. Vast lava flows that reshaped the earth. Video proofs, such as this one of a sphere being turned inside out, are transforming mathematics. Copyright 1993 Scientific American, Inc. October 1993 Volume 269 Number 4 32 Clearing the Air in Los Angeles James M. Lents and William J. Kelly The caustic brown smog that often veils the San Bernardino Mountains attests that the air quality in Los Angeles is still the worst in the U.S. Yet it obscures a remarkable achievement: during the past two decades, pollution has been cut dramatically—even as the city’s population and the number of automobiles clog- ging freeways soared. The cleanup is one that other cities might emulate. 42 Large Igneous Provinces Millard F. Co¤n and Olav Eldholm Periodically in the earth’s past, massive upwellings of magma have created vast el- evated plains, both on land and beneath the sea. Unlike the comparatively steady volcanism at the margins of continental plates, these powerful spasms occurred extremely rapidly in geologic time. Studies of these ancient lava flows indicate they may have profoundly altered the global climate and the course of evolution. 50 Evolutionarily Mobile Modules in Proteins Russell F. Doolittle and Peer Bork Like necklaces strung from beads, many proteins consist of discrete modules that have distinct structures and functions. Surprisingly, some of these individ- ual domains appear in animal and bacterial cells. Does that imply that they are ancient relics of their common ancestry? Not always, the authors contend; some of them may have jumped across species lines—and done so fairly recently. 58 Electrorheological Fluids Thomas C. Halsey and James E. Martin They are liquid until an electric current is applied; then they ooze like honey or solidify like gelatin—all in less time than the blink of an eye. The unusual properties of electrorheological fluids, first patented in 1947, have suggested applications ranging from automotive clutches to adaptive shock absorbers. Only now are technical impediments to commercialization being overcome. 68 Water-Pollinated Plants Paul Alan Cox With fickle currents and changing tides, water seems a poor vector to disperse the pollen of flowering plants. But some aquatic species have developed strate- gies that the mathematics of search theory proves to be quite e¤cient. These adaptations to exploit the physics of fluids enabled terrestrial plants to return to an aquatic environment and are classic examples of convergent evolution. Copyright 1993 Scientific American, Inc. 4 Scientific American (ISSN 0036-8733), published monthly by Scientific American, Inc., 415 Madison Avenue, New York, N.Y. 10017-1111. Copyright © 1993 by Scientific American, Inc. All rights reserved. No part of this issue may be reproduced by any mechanical, photographic or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted or otherwise copied for public or private use without written permission of the publisher. Second-class postage paid at New York, N.Y., and at additional mailing offices. Authorized as second-class mail by the Post Office Department, Ottawa, Canada, and for payment of postage in cash. Canadian GST No. R 127387652. Subscription rates: one year $36 (outside U.S. and possessions add $11 per year for postage). Subscription inquiries: U.S. and Canada 800-333-1199; other 515-247-7631. Postmaster: Send address changes to Scientific American, Box 3187, Harlan, Iowa 51537. Reprints available: write Reprint Department, Scientific American, Inc., 415 Madison Avenue, New York, N.Y. 10017-1111, or fax: (212) 355-0408. 76 Simulating Brain Damage Geo›rey E. Hinton, David C. Plaut and Tim Shallice Certain injuries of the brain produce bizarre patterns of errors in reading. The same aberrations can be reproduced in computer models by damaging informa- tion pathways. Such simulations add support to current ideas about the nature of dyslexia and the way written language is processed in the brain. 84 Raising the Vasa Lars-Akeº Kvarning On a sunny day in 1628, the proudest addition to the navy of Sweden’s King Gustavus II Adolphus foundered just minutes into her maiden voyage. Today this magnificent, flawed vessel is the centerpiece of a museum in Stockholm. Here is the story of her 30-year-long salvage and painstaking restoration. 92 TRENDS IN MATHEMATICS The Death of Proof John Horgan, senior writer Mathematicians have always measured the progress of their search for truth in the precise language of the proof. But computers are putting a new spin on QED. No mere human can verify the accuracy of the enormous calculations in so-called computer proofs. Will mathematicians be forced to accept that their assertions are, at best, only provisionally true, true only until they are proved false? DEPARTMENTS 14 Science and the Citizen 8 Letters to the Editor The ease of elaboration.... Wealth and health.... Mauled anecdote. The toll of child labor.... A winning strategy.... Gene therapy as a can- 12 50 and 100 Years Ago cer treatment.... Nuclear subs for 1893: A remarkable experiment oceanographers.... Sharks get tu- that only a few could repeat. mors.... Art that evolves.... Jurassic viruses.... PROFILE: Twice Nobelist Frederick Sanger. 112 The Amateur Scientist Fluids that turn solid in a magnetic field. 104 Science and Business 114 Book Reviews Malthusian musings.... The ships Critical of CRADAs.... Is magnetic of Iberia .... Following the flu. resonance really safe?... The battery bottleneck .... Cordless elevators.... Impoverished elderly.... A gas meter 120 Essay : Richard Wassersug that listens to the flow.... THE ANA- The unstoppable human LYTICAL ECONOMIST: Pondering high- pilgrimage to the planets. tech fixes for developing nations. Copyright 1993 Scientific American, Inc. 5 THE COVER shows a scene from a comput- ® er-generated film of a sphere being turned inside out, or everted. The “video Proof,” which was produced at the Geometry Cen- Established 1845 ter in Minneapolis, Minn., is based on a topological theorem by William P. Thurston EDITOR: Jonathan Piel of the Mathematical Sciences Research In- BOARD OF EDITORS: Alan Hall , Executive Editor ; stitute (see “The Death of Proof,” by John Michelle Press, Managing Editor ; John Rennie, Horgan, page 92). The rules of topology al- Russell Ruthen, Associate Editors; Timothy M. low the skin of the sphere to be stretched Beardsley; W. Wayt Gibbs; Marguerite Holloway ; and twisted and even to pass through it- John Horgan, Senior Writer ; Philip Morrison, Book Editor ; Corey S. Powell; Philip E . Ross; Ricki self, but the eversion must be completed L. Rusting; Gary Stix; Paul Wallich; PhiliP M. Yam without the formation of a kink. ART: Joan Starwood, Art Director ; Edward Bell, Art Director, Graphics Systems; Jessie Nathans, Associate Art Director ; Nisa Geller, Photography Editor ; Johnny Johnson, Assistant Art Director, THE ILLUSTRATIONS Graphics Systems Cover illustration by the Geometry Center, University of Minnesota COPY: Maria-Christina Keller, Copy Chief; Nancy L. Freireich; Molly K. Frances; Daniel C. Schleno› Page Source Page Source PRODUCTION: Richard Sasso, Vice President, Production; William Sherman, Production Man- 32–33 Miguel L. Fairbanks (top, 76–77 Courtesy of Tim Shallice ager ; Managers: Carol Albert, Print Production; first six photographs), Ken Janet Cermak, Quality Control; Tanya DeSilva , Biggs/Tony Stone Images 78 Johnny Johnson (top), Prepress; Carol Hansen, Composition; Madelyn (top, last photograph), Boris Starosta (bottom) Keyes, Systems; Eric Marquard, Special Projects; Leo J. Petruzzi , Manufacturing & Makeup; Ad Edwin Maynard/The 79–82 Boris Starosta Tra¤c: Carl Cherebin Environmental Picture CIRCULATION: Lorraine Leib Terlecki, Circulation Library (bottom) 84–85 Courtesy of Vasa Director ; Joanne Guralnick, Circulation Promo- Museum, Stockholm 34–35 Jana Brenning tion Manager ; Rosa Davis, Fulfillment Manager ; Katherine Robold, Newsstand Manager 86–87 Jana Brenning (top), 36 Johnny Johnson Vasa Museum (bottom) ADVERTISING: Robert F. Gregory, Advertising Director. OFFICES: NEW YORK: Meryle Lowen- 38 UPI/Bettmann Newsphotos 88 Hank Iken thal, New York Advertising Manager ; William Buchanan, Manager, Corporate Advertising ; Pe- 39 Alon Reininger/Contact 89–91 Courtesy of Hans ter Fisch, Randy James, Elizabeth Ryan. Michelle Press Images Hammarskiöld, Larsen, Director, New Business Development. Vasa Museum CHICAGO: 333 N. Michigan Avenue, Chicago, IL 42–43 Ian Worpole 60601; Patrick Bachler, Advertising Manager. 92–93 Geometry Center (computer DETROIT: 3000 Town Center, Suite 1435, South- 44 Ocean Drilling Program art), StePhanie Rausser field, MI 48075; Edward A. Bartley, Detroit Man- (left), Patricia J. Wynne (photograph) ager. WEST COAST: 1554 S. Sepulveda Blvd., (right) Suite 212, Los Angeles, CA 90025; Kate Dobson, 94 Robert Prochnow Advertising Manager ; Tonia Wendt. Lisa K. Car- 45 Patricia J. Wynne (left), den, Lianne Bloomer, San Francisco. CANADA: Australian Geological 95 Per Breiehagen/Black Fenn Company, Inc. DALLAS: Gri¤th Group Survey Organization Star (photograph); MARKETING SERVICES: Laura Salant, Marketing (top right), Millard F. Jean E. Taylor, Rutgers Director ; Diane Schube, Promotion Manager ; Co¤n (bottom right) University (computer art) Mary Sadlier, Research Manager ; Ethel D. Little, Advertising Coordinator 46–48 Ian Worpole 98 James T. Ho›man, Edward C. Thayer, INTERNATIONAL: EUROPE:
Recommended publications
  • Fractal 3D Magic Free
    FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction.
    [Show full text]
  • The Oxford Democrat
    The Oxford Democrat. NUMBER 24 VOLUME 80. SOUTH PARIS, MAINE, TUESDAY, JUNE 17, 1913. where hit the oat "Hear Hear The drearily. "That's you look out for that end of the business. to an extent. low Voted Out the Saloons called ye! ye! poll· D. *ΆΚΚ. increase the aupply quite They he said. on | are now closed." Everyone drew a aigb nail on the head," "Mouey. ▲11 I want you to do 1b to pass this AMONG THE FARMERS. Some Kansas experiment· show an in- The following extract from λ lettei Auctioneer, DON'T HURRY OR WORRY of and went borne to aopper, ex- the mean and dirty thing that can here note." Lictjnsed crease after a crop of clover was turned 'rom Mrs. Benj. H. Fiab of Santa Bar relief, — who ate theirs world—that's «"»«· At Meals Follows. TH* cept tbe election board, the best man In the "Colonel Tod hunter," replied tlie »IU>. Dyspepsia "SPKED PLOW." under. The yield of corn was Increased >ara, Calif., may be of interest bott whip âû0TH and oat of pail· and boxes, and afterwards Thurs." "the Indorsement and the col- Moderate- 20 bushel· an acre, oats 10 bushels, rom the temperance and tbe suffrage Colonel the trouble. banker, Tera» I went to A serene mental condition and time began counting votes. aleep other man's mon- a Correspondence on practical agricultural topics potatoes 30 bushel*. itand point. "Ifs generally the lateral make this note good, and it's to chow your food is more la bearing them count. thoroughly aollcHed.
    [Show full text]
  • Micromachined Linear Brownian Motor: Transportation of Nanobeads by Brownian Motion Using Three-Phase Dielectrophoretic Ratchet Ersin ALTINTAS , Karl F
    Japanese Journal of Applied Physics Vol. 47, No. 11, 2008, pp. 8673–8677 #2008 The Japan Society of Applied Physics Micromachined Linear Brownian Motor: Transportation of Nanobeads by Brownian Motion Using Three-Phase Dielectrophoretic Ratchet à Ersin ALTINTAS , Karl F. BO¨ HRINGER1, and Hiroyuki FUJITA Center for International Research on Micro-Mechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan 1Department of Electrical Engineering, The University of Washington, Box 352500, 234 Electrical Engineering/Computer Science Engineering Building, Seattle, WA 98195-2500, U.S.A. (Received June 20, 2008; revised August 7, 2008; accepted August 15, 2008; published online November 14, 2008) Nanosystems operating in liquid media may suffer from random Brownian motion due to thermal fluctuations. Biomolecular motors exploit these random fluctuations to generate a controllable directed movement. Inspired by nature, we proposed and realized a nano-system based on Brownian motion of nanobeads for linear transport in microfluidic channels. The channels limit the degree-of-freedom of the random motion of beads into one dimension, which was rectified by a three-phase dielectrophoretic ratchet biasing the spatial probability distribution of the nanobead towards the transportation direction. We micromachined the proposed device and experimentally traced the rectified motion of nanobeads and observed the shift in the bead distribution as a function of applied voltage. We identified three regions of operation; (1) a random motion region, (2) a Brownian motor region, and (3) a pure electric actuation region. Transportation in the Brownian motor region required less applied voltage compared to the pure electric transport.
    [Show full text]
  • Brownian(Mo*On(
    Brownian(Mo*on( Reem(Mokhtar( What(is(a(Ratchet?( A(device(that(allows(a(sha9(to(turn(only(one(way( hLp://www.hpcgears.com/products/ratchets_pawls.htm( Feynman,(R.(P.,(Leighton,(R.(B.,(&(Sands,(M.(L.((1965).(The$Feynman$Lectures$on$Physics:$ Mechanics,$radia7on,$and$heat((Vol.(1).(AddisonKWesley.( Thermodynamics( 2nd(law,(by(Sadi(Carnot(in(1824.( ( • Zeroth:(If(two(systems(are(in(thermal(equilibrium(with( a(third(system,(they(must(be(in(thermal(equilibrium( with(each(other.(( • First:(Heat(and(work(are(forms(of(energy(transfer.( • Second:(The(entropy(of(any(isolated(system(not(in( thermal(equilibrium(almost(always(increases.( • Third:(The(entropy(of(a(system(approaches(a(constant( value(as(the(temperature(approaches(zero.( ( hLp://en.wikipedia.org/wiki/Laws_of_thermodynamics( Why(is(there(a(maximum(amount(of(work( that(can(be(extracted(from(a(heat(engine?( • Why(is(there(a(maximum(amount(of(work(that( can(be(extracted(from(a(heat(engine?( • Carnot’s(theorem:(heat(cannot(be(converted( to(work(cyclically,(if(everything(is(at(the(same( temperature(!(Let’s(try(to(negate(that.( The(Ratchet(As(An(Engine( Ratchet,(pawl(and(spring.( The(Ratchet(As(An(Engine( Forward rotation Backward rotation ε energy to lift the pawl ε energy to lift the pawl ε Lθ work done on load θ ε + Lθ energy to rotate wheel θ Lθ work provided by load by one tooth f 1 L / − −(ε+ θ ) τ1 ε + Lθ energy given to vane L fB = Z e Boltzmann factor for work provided by vane b −1 −ε /τ2 f fB = Z e Boltzmann factor for ν fB ratching rate with ν T2 T2 attempt frequency tooth slip ν f b slip rate with f fL power delivered B ν B θ attempt frequency ν ε energy provided to ratchet T1 T1 Equilibrium and reversibility Ratchet Brownian motor b f ε+ Lθ ε ratching rate = slip rate f f τ1 − − B = B f b Leq θε= −1 τ1 τ2 Angular velocity of ratchet: Ω =θν (fB − fB )= θν e − e τ 2 Reversible process by increasing the ε ε load infinitesimally from equilibrium − − ΩL=0 →θν e τ1 − e τ 2 Leq.
    [Show full text]
  • Green Belt Slowly Coming Together
    Kemano, Kemano, Kemano She loved the outdoors 1 I Bountiful harvest Reaction to the death of the ~ Vicki Kryklywyj, the heart and soul / /Northern B.C, Winter Games project keeps rolling in by,fax, mail of local hikers, is / / athletes cleaned up in Williams,, and personal delivery/NEWS A5 : remembered/COMMUNITY B1 j /Lake this year/SPORTS Cl I • i! ':i % WEDNESDAY FEBROARY 151 1995 I'ANDAR. /iiii ¸ :¸!ilii if!// 0 re n d a t i p of u n kn own ice b e rg" LIKE ALL deals in the world of tion Corp. effective April 30, the That title is still held by original "They've phoned us and have and the majority of its services, lulose for its Prince Rupert pulp high finance, the proposed amal- transfer of Orenda's forest licorice owners Avenor Inc. of Montreal requested a meeting but there's induding steam and effluent mill for the next two years. gamation of Orenda Forest Pro- must be approved by the provin- and a group of American newspa- been no confirmation of a time treaUnent, are tied to the latter. Even should all of the Orenda duels with a mostly American cial government. per companies. for that meeting," said Archer Avenor also owns and controls pulp fibre end up at Gold River, it company is more complicated There's growing opposition to The partuership built the mill in official Norman Lord from docking facilities and a chipper at still will fall short of the 5130,000 than it first seems. the move to take wood from the the late 1980s but dosed it in the Montreal last week.
    [Show full text]
  • Catalog INTERNATIONAL
    اﻟﻤﺆﺗﻤﺮ اﻟﻌﺎﻟﻤﻲ اﻟﻌﺸﺮون ﻟﺪﻋﻢ اﻻﺑﺘﻜﺎر ﻓﻲ ﻣﺠﺎل اﻟﻔﻨﻮن واﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ The 20th International Symposium on Electronic Art Ras al-Khaimah 25.7833° North 55.9500° East Umm al-Quwain 25.9864° North 55.9400° East Ajman 25.4167° North 55.5000° East Sharjah 25.4333 ° North 55.3833 ° East Fujairah 25.2667° North 56.3333° East Dubai 24.9500° North 55.3333° East Abu Dhabi 24.4667° North 54.3667° East SE ISEA2014 Catalog INTERNATIONAL Under the Patronage of H.E. Sheikha Lubna Bint Khalid Al Qasimi Minister of International Cooperation and Development, President of Zayed University 30 October — 8 November, 2014 SE INTERNATIONAL ISEA2014, where Art, Science, and Technology Come Together vi Richard Wheeler - Dubai On land and in the sea, our forefathers lived and survived in this environment. They were able to do so only because they recognized the need to conserve it, to take from it only what they needed to live, and to preserve it for succeeding generations. Late Sheikh Zayed bin Sultan Al Nahyan viii ZAYED UNIVERSITY Ed unt optur, tet pla dessi dis molore optatiist vendae pro eaqui que doluptae. Num am dis magnimus deliti od estem quam qui si di re aut qui offic tem facca- tiur alicatia veliqui conet labo. Andae expeliam ima doluptatem. Estis sandaepti dolor a quodite mporempe doluptatus. Ustiis et ium haritatur ad quaectaes autemoluptas reiundae endae explaboriae at. Simenis elliquide repe nestotae sincipitat etur sum niminctur molupta tisimpor mossusa piendem ulparch illupicat fugiaep edipsam, conecum eos dio corese- qui sitat et, autatum enimolu ptatur aut autenecus eaqui aut volupiet quas quid qui sandaeptatem sum il in cum sitam re dolupti onsent raeceperion re dolorum inis si consequ assequi quiatur sa nos natat etusam fuga.
    [Show full text]
  • Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites
    micromachines Review Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites Soheila Shabaniverki 1 and Jaime J. Juárez 1,2,* 1 Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA * Correspondence: [email protected]; Tel.: +1-515-294-3298 Abstract: Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they are used as inks to create composite materials with applications to wearable sensors, energy storage materials, and actuation elements. It has been observed that directional alignment of the particle phase in the polymer dispersion can imbue the resulting composite material with enhanced mechani- cal, electrical, thermal or optical properties. Thus, external field-driven particle alignment during the AM process is one approach to tailoring the properties of composites for end-use applications. This review article provides an overview of externally directed field mechanisms (e.g., electric, magnetic, and acoustic) that are used for particle alignment. Illustrative examples from the AM literature show how these mechanisms are used to create structured composites with unique properties that can only be achieved through alignment. This article closes with a discussion of how particle distribution (i.e., microstructure) affects mechanical properties. A fundamental description of particle phase transport in polymers could lead to the development of AM process control for particle-polymer composite fabrication. This would ultimately create opportunities to explore the fundamental impact that alignment has on particle-polymer composite properties, which opens up the possibility of tailoring these materials for specific applications.
    [Show full text]
  • Movements of Molecular Motors: Diffusion and Directed Walks
    Movements of Molecular Motors: Diffusion and Directed Walks Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Theoretische Physik eingereicht an der Mathematisch{Naturwissenschaftlichen Fakult¨at der Universit¨at Potsdam angefertigt am Max{Planck{Institut fur¨ Kolloid- und Grenzfl¨achenforschung in Golm von Stefan Klumpp geboren am 29. September 1973 in Waiblingen Potsdam, im April 2003 Zusammenfassung Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechsel- spiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden L¨osung gekennzeichnet. Diese eigentumlichen¨ Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. Im einzelnen werden vier Transportph¨anomene untersucht: (i) Random Walks von einzel- nen Motoren in Kompartimenten verschiedener Geometrien, (ii) station¨are Konzentrations- profile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen, (iii) randinduzierte Phasenuberg¨ ¨ange in offenen r¨ohrenartigen Kompartimenten, die an Motoren- reservoirs gekoppelt sind, und (iv) der Einfluß von kooperativen Effekten bei der Motor{ Filament-Bindung auf die Bewegung. Alle diese Ph¨anomene sind experimentell zug¨anglich, und m¨ogliche experimentelle Realisierungen werden diskutiert. Abstract Movements of processive
    [Show full text]
  • Brownian Motors
    adp header will be provided by the publisher Brownian motors Peter Hanggi¨ ∗1, Fabio Marchesoni2, and Franco Nori3,4 1 Universit¨at Augsburg, Institut f¨ur Physik, Universit¨atsstrasse 1, 86135 Augsburg, Germany 2 Dipartimento di Fisica, Universit`adi Camerino, 62032 Camerino, Italy 3 Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan 4 Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109- 1120, USA Key words Brownian motors, Brownian motion, statistical physics, noise-induced transport PACS 05.40.-a, 05.66.-k, 05.70.Ln, 82.20.-w, 87.16.-b In systems possessing a spatial or dynamical symmetry breaking thermal Brownian motion combined with unbiased, non-equilibrium noise gives rise to a channelling of chance that can be used to exercise control over systems at the micro- and even on the nano-scale. This theme is known as “Brownian motor” concept. The constructive role of (the generally overdamped) Brownian motion is exemplified for a noise-induced transport of particles within various set-ups. We first present the working principles and characteristics with a proof-of-principle device, a diffusive temperature Brownian motor. Next, we consider very recent applications based on the phenomenon of signal mixing. The latter is particularly simple to implement experimentally in order to optimize and selectively control a rich variety of directed transport behaviors. The subtleties and also the potential for Brownian motors operating in the quantum regime are outlined and some state-of-the-art applications, together with future roadways, are presented.
    [Show full text]
  • Electrorheological Dampers for Structural Vibration Suppression
    P895-263893 11111111111111111111 11111111111 December 1994 Report No. UMCEE 94-:35 ELECTRORHEOLOGICAL DAMPERS FOR STRUCTURAL VIBRATION SUPPRESSION by Henri P. Gavin Robert D. Hanson A report on research sponsored by National Science Foundation Grant No. NSF-BCS-9201787 PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE The Department of Civil and Environmental Engineering The University of Michigan Ann Arbor, Michigan 49109-2125 ACKNOWLEDGEMENTS The author thanks the National Science Foundation for providing the financial re­ sources to conduct the research described in this report. This report is, in essence, the doctoral dissertation of Henri P. Gavin. This dissertation was supported financially by a grant from the National Science Foundation under Award No. BCS-9201787 as part of the Coordinated USA Research Program on Structural Control for Safety, Performance, and Hazard Mitigation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation. The contributions of Professors Hanson, McClamroch, Filisko, and Peek to this work are gratefully acknowledged. It is a privilege and an inspiration to be associated with internationally renowned leaders in their fields. Professor Hanson's skills go beyond his technical knowledge of earthquake engi­ neering and his ability to extract the most important mechanisms from very compli­ cated systems. He is a consummate organizer, leader, and mediator. I am indebted to him for providing me an opportunity to work in structural control, for his men­ torship, and for his expert guidance. Extensive discussions "With Professor Filisko contributed largely to my concept of ER materials.
    [Show full text]
  • Distributions, Measures, Functions of Bounded Variations
    Appendix A Distributions, Measures, Functions of Bounded Variations Sections A.1 and A.2 are given for the sake of completeness because some notions are used in Chaps. 1 and 2, but may be safely skipped since their implication on understanding Nonsmooth Mechanics is weak. By contrast, Sects. A.3 and B survey useful mathematical tools that cannot be ignored. A.1 Schwartz’ Distributions A.1.1 The Functional Approach In this section we first briefly introduce the functional notion of a distribution as defined in [1082]. Definition A.1 D is the subspace of smooth1 functions ϕ : Rn → C, with bounded support. Thus a function ϕ(·) on Rn belongs to D, if and only if ϕ(·) is smooth, and there n exists a bounded set Kϕ of R outside of which ϕ ≡ 0. As an example, L. Schwartz gives the following function [1082, Chap. 1,§2], with n = 1, Kϕ =[−1, 1]: 0if|t|≥1 ϕ(t) = −1 (A.1) e 1−t2 if |t| < 1 Definition A.2 A distribution D is a continuous linear form defined on the vector space D. This means that to any ϕ ∈ D, D associates a complex number D(ϕ), noted D, ϕ. The space of distributions on D is the dual space of D and is noted D . The functions in D are sometimes called test-functions. 1i.e., indefinitely differentiable. © Springer International Publishing Switzerland 2016 535 B. Brogliato, Nonsmooth Mechanics, Communications and Control Engineering, DOI 10.1007/978-3-319-28664-8 536 Appendix A: Distributions, Measures, Functions of Bounded Variations Two distributions D1, D2 are equal on an open interval Δ if D1 − D2 = 0 on Δ, i.e., if for any ϕ ∈ D whose support Kϕ is contained in Δ, then D1 − D2, ϕ=0.
    [Show full text]
  • Herramientas Para Construir Mundos Vida Artificial I
    HERRAMIENTAS PARA CONSTRUIR MUNDOS VIDA ARTIFICIAL I Á E G B s un libro de texto sobre temas que explico habitualmente en las asignaturas Vida Artificial y Computación Evolutiva, de la carrera Ingeniería de Iistemas; compilado de una manera personal, pues lo Eoriento a explicar herramientas conocidas de matemáticas y computación que sirven para crear complejidad, y añado experiencias propias y de mis estudiantes. Las herramientas que se explican en el libro son: Realimentación: al conectar las salidas de un sistema para que afecten a sus propias entradas se producen bucles de realimentación que cambian por completo el comportamiento del sistema. Fractales: son objetos matemáticos de muy alta complejidad aparente, pero cuyo algoritmo subyacente es muy simple. Caos: sistemas dinámicos cuyo algoritmo es determinista y perfectamen- te conocido pero que, a pesar de ello, su comportamiento futuro no se puede predecir. Leyes de potencias: sistemas que producen eventos con una distribución de probabilidad de cola gruesa, donde típicamente un 20% de los eventos contribuyen en un 80% al fenómeno bajo estudio. Estos cuatro conceptos (realimentaciones, fractales, caos y leyes de po- tencia) están fuertemente asociados entre sí, y son los generadores básicos de complejidad. Algoritmos evolutivos: si un sistema alcanza la complejidad suficiente (usando las herramientas anteriores) para ser capaz de sacar copias de sí mismo, entonces es inevitable que también aparezca la evolución. Teoría de juegos: solo se da una introducción suficiente para entender que la cooperación entre individuos puede emerger incluso cuando las inte- racciones entre ellos se dan en términos competitivos. Autómatas celulares: cuando hay una población de individuos similares que cooperan entre sí comunicándose localmente, en- tonces emergen fenómenos a nivel social, que son mucho más complejos todavía, como la capacidad de cómputo universal y la capacidad de autocopia.
    [Show full text]