Bam35 Tectivirus Intraviral Interaction Map Unveils New Function and Localization of Phage Orfan Proteins Downloaded From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entry of the Membrane-Containing Bacteriophages Into Their Hosts
Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host. -
A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities. -
Genetic Content and Evolution of Adenoviruses Andrew J
Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants. -
Indirect Selection Against Antibiotic Resistance Via Specialized Plasmid-Dependent Bacteriophages
microorganisms Perspective Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages Reetta Penttinen 1,2 , Cindy Given 1 and Matti Jalasvuori 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9C, P.O.Box 35, FI-40014 Jyväskylä, Finland; reetta.k.penttinen@jyu.fi (R.P.); cindy.j.given@jyu.fi (C.G.) 2 Department of Biology, University of Turku, FI-20014 Turku, Finland * Correspondence: matti.jalasvuori@jyu.fi; Tel.: +358-504135092 Abstract: Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, Citation: Penttinen, R.; Given, C.; we take a snapshot of the current knowledge of plasmid-dependent bacteriophages. -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
1 Chapter I Overall Issues of Virus and Host Evolution
CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology. -
Evolution of Double-Stranded DNA Viruses of Eukaryotes: from Bacteriophages to Transposons to Giant Viruses Eugene V
Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin, Mart Krupovic, Natalya Yutin To cite this version: Eugene V. Koonin, Mart Krupovic, Natalya Yutin. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Annals of the New York Academy of Sciences, Wiley, 2015, DNA Habitats and Their RNA Inhabitants, 1341 (1), pp.10-24. 10.1111/nyas.12728. pasteur-01977390 HAL Id: pasteur-01977390 https://hal-pasteur.archives-ouvertes.fr/pasteur-01977390 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: DNA Habitats and Their RNA Inhabitants Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses Eugene V. Koonin,1 Mart Krupovic,2 and Natalya Yutin1 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland. 2Institut Pasteur, Unite´ Biologie Moleculaire´ du Gene` chez les Extremophiles,ˆ Paris, France Address for correspondence: Eugene V. -
Comparative Analysis of Bacterial Viruses Bam35, Infecting a Gram-Positive Host, and PRD1, Infecting Gram-Negative Hosts, Demonstrates a Viral Lineage૾
Available online at www.sciencedirect.com R Virology 313 (2003) 401–414 www.elsevier.com/locate/yviro Comparative analysis of bacterial viruses Bam35, infecting a gram-positive host, and PRD1, infecting gram-negative hosts, demonstrates a viral lineage૾ Janne J. Ravantti,a,b,1 Ausra Gaidelyte,b,c,1 Dennis H. Bamford,b and Jaana K.H. Bamfordb,* a Department of Computer Science, P.O. Box 26, (Teollisuuskatu 23), 00014 University of Helsinki, Finland b Institute of Biotechnology and Department of Biosciences, Biocenter 2, P.O. Box 56 (Viikinkaari 5), 00014 University of Helsinki, Finland c Department of Biotechemistry and Biophysics, Vilnius University, LT-2009, Vilnius, Lithuania Received 18 November 2002; returned to author for revision 12 January 2003; accepted 22 March 2003 Abstract Extra- and intracellular viruses in the biosphere outnumber their cellular hosts by at least one order of magnitude. How is this enormous domain of viruses organized? Sampling of the virosphere has been scarce and focused on viruses infecting humans, cultivated plants, and animals as well as those infecting well-studied bacteria. It has been relatively easy to cluster closely related viruses based on their genome sequences. However, it has been impossible to establish long-range evolutionary relationships as sequence homology diminishes. Recent advances in the evaluation of virus architecture by high-resolution structural analysis and elucidation of viral functions have allowed new opportunities for establishment of possible long-range phylogenic relationships—virus lineages. Here, we use a genomic approach to investigate a proposed virus lineage formed by bacteriophage PRD1, infecting gram-negative bacteria, and human adenovirus. -
Bringing New Concepts to Modern Virology
viruses Review Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology Sari Mäntynen 1,2, Lotta-Riina Sundberg 1, Hanna M. Oksanen 3,* and Minna M. Poranen 3,* 1 Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland; [email protected] (S.M.); lotta-riina.sundberg@jyu.fi (L.-R.S.) 2 Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA 3 Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland * Correspondence: hanna.oksanen@helsinki.fi (H.M.O.); minna.poranen@helsinki.fi (M.M.P.); Tel.: +358-2941-59104 (H.M.O.); +358-2941-59106 (M.M.P.) Received: 20 December 2018; Accepted: 16 January 2019; Published: 18 January 2019 Abstract: Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. -
Structural Studies of the Extremophilic Viruses P23-77 and STIV2
Life on the Edge: Structural Studies of the Extremophilic Viruses P23-77 and STIV2 Lotta J. Happonen Institute of Biotechnology and Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki and Viikki Doctoral Programme in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences, University of Helsinki, in the auditorium 1041 of Biocenter 2, Viikinkaari 5, Helsinki, on June 8th 2012 at 12 o´clock noon. HELSINKI 2012 ii Supervisor Professor Sarah J. Butcher Institute of Biotechnology and Department of Biosciences University of Helsinki Finland Reviewers Nicola G. A. Abrescia, Ph.D. Structural Biology Unit Center for Cooperative Research in Biosciences (CIC bioGUNE) Bilbao Spain and Docent Pirkko Heikinheimo Department of Biochemistry and Food Chemistry University of Turku Finland Opponent Professor Timothy S. Baker Department of Chemistry and Biochemistry University of California San Diego USA Custos Professor Minna Nyström Department of Biosciences, Division of Genetics Faculty of Biological and Environmental Sciences University of Helsinki Finland ©Lotta Happonen 2012 Cover picture: Pasi Laurinmäki and Lotta Happonen ISBN 978-952-10-8001-2 (paperback) ISBN 978-952-10-8002-9 (PDF) ISSN 1799-7372 UNIGRAFIA Helsinki 2012 iii The pursuit of truth and beauty is a sphere of activity in which we are permitted to remain children all our lives. – Albert Einstein iv ORIGINAL PUBLICATIONS The thesis is based on the following articles, which are referred to in the text by their Roman numerals, and which are reprinted at the end of this thesis with permission from the publishers. -
Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage Φoh3 Which Infects Thermus Thermophilus HB8
ORIGINAL RESEARCH published: 23 February 2016 doi: 10.3389/fmicb.2016.00050 Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage ϕOH3 Which Infects Thermus thermophilus HB8 Yuko Nagayoshi 1, Kenta Kumagae 1, Kazuki Mori 2, Kosuke Tashiro 2, Ayano Nakamura 1, Yasuhiro Fujino 3, Yasuaki Hiromasa 4, Takeo Iwamoto 5, Satoru Kuhara 2, Toshihisa Ohshima 6 and Katsumi Doi 1* 1 Faculty of Agriculture, Institute of Genetic Resources, Kyushu University, Fukuoka, Japan, 2 Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan, 3 Faculty of Arts and Science, Kyushu University, Fukuoka, Japan, 4 Faculty of Agriculture, Attached Promotive Center for International Education and Research of Agriculture, Kyushu University, Fukuoka, Japan, 5 Core Research Facilities, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan, 6 Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan A filamentous bacteriophage, ϕOH3, was isolated from hot spring sediment in Obama Edited by: hot spring in Japan with the hyperthermophilic bacterium Thermus thermophilus HB8 as Bhabatosh Das, its host. Phage ϕOH3, which was classified into the Inoviridae family, consists of a flexible Translational Health Science and ϕ Technology Institute, India filamentous particle 830 nm long and 8 nm wide. OH3 was stable at temperatures ◦ Reviewed by: ranging from 70 to 90 C and at pHs ranging from 6 to 9. A one-step growth curve of the Sukhendu Mandal, phage showed a 60-min latent period beginning immediately postinfection, followed by University of Calcutta, India intracellular virus particle production during the subsequent 40 min. -
WO 2015/013681 Al 29 January 2015 (29.01.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/013681 Al 29 January 2015 (29.01.2015) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12Q 1/68 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US20 14/048301 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 25 July 2014 (25.07.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/858,3 11 25 July 2013 (25.07.2013) US kind of regional protection available): ARIPO (BW, GH, 61/899,027 1 November 2013 (01. 11.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: BIO-RAD LABORATORIES, INC. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [US/US]; 1000 Alfred Nobel Drive, Hercules, CA 94547 EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (US).