Tve356 Oberprieler.Qxp

Total Page:16

File Type:pdf, Size:1020Kb

Tve356 Oberprieler.Qxp 1 2 ROLF G. OBERPRIELER & ERIK ARNDT 1CSIRO Entomology, Canberra, Australia, 2University of Applied Sciences, Bernburg, Germany ON THE BIOLOGY OF MANTICORA FABRICIUS (COLEOPTERA: CARABIDAE: CICINDELINAE), WITH A DESCRIPTION OF THE LARVA AND TAXONOMIC NOTES Oberprieler, R.G. & E. Arndt, 2000. On the biology of Manticora Fabricius (Coleoptera: Cara- bidae: Cicindelinae), with a description of the larvae and taxonomic notes. – Tijdschrift voor Entomologie 143: 71-89, figs. 1-24. [ 0040-7496]. Published 5 July 2000. Observations from both the field and captivity on the biology and behaviour of Manticora in southern Africa gathered over two decades are collated and presented under the aspects of activ- ity patterns, locomotion, escape and defence, hunting, prey detection, prey capture and feeding, fighting, mating and mate-guarding, oviposition, sheltering and hibernation, and prey spectrum for the adult beetles, and activity patterns, tunnel construction, prey detection, prey capture and feeding, and prey spectrum for the larvae. A likely parasitoid of the larva is identified. The larvae and aspects of the hunting behaviour of adults and larvae are illustrated in colour for the first time. Contrary to earlier reports, the adults hunt their prey by smell and are opportunistic diur- nal predators of phytophagous terrestrial insects, not ‘snail-shell breakers’ specialized to prey on strongly sclerotized beetles. The large, sexually dimorphic mandibles fulfil an additional role dur- ing mating in that they enable the male to ride on the female in a prolonged mandibular am- plexus and guard her against other males. The asymmetrical development of the male mandibles appears to represent an evolutionary compromise between the selection pressures of prey capture and mate guarding. The larvae of the three common species of the genus, M. tuberculata de Geer, M. mygaloides Thomson and M. latipennis Waterhouse, are described in all instars. They are characterized by eight autapomorphic character states and also display some characteristics shared with the Megacephala group, supporting the notion of a common early split from the re- maining cicindelines. It is concluded that the current classification recognizing several closely similar and largely sympatric species is untenable from a biological and evolutionary perspective and that, in addition to the above-mentioned species, only M. congoensis Péringuey and M. gru- ti Boucard appear to represent natural but allopatric species. A thorough and comprehensive sys- tematic revision of the genus is required to fully clarify its taxonomy. Correspondence: R. Oberprieler, Division of Entomology, CSIRO, G.P.O. Box 1700, Canber- ra, ACT 2601, Australia. E-mail: [email protected] Keywords. – Cicindelinae; Manticora; biology; behaviour; larvae; systematics; southern Africa. Despite the interest that the large southern African ratory in southern Africa over a period of twenty tiger beetles of the genus Manticora have generated years. This paper collates all the behavioural observa- for more than a century among students and collec- tions of Manticora obtained from mainly three popu- tors of tiger beetles, little is known about their biolo- lations representing (according to the current state of gy and ecology. Yet, in view of the basal phylogenetic taxonomy of the genus) two species. Descriptions of position of the genus (Arndt & Putchkov 1997), all three larval instars of the genus are provided, based knowledge of its larva and larval habits is crucial to on specimens from these and some other recently understanding its relationships to other cicindeline sampled populations. Finally, the function of the en- genera. Unfortunately also, much of the scanty bio- larged mandibles in the males and the bearing of dif- logical information that has been published on these ferences in characters of the larvae and of behavioural beetles is unsubstantiated or incorrect, as shown by traits on the taxonomy and species boundaries in the the senior author’s observations in the field and labo- genus are discussed. 71 Downloaded from Brill.com10/04/2021 08:06:47AM via free access T E, 143, 2000 Sketchy early biological notes on Manticora were as one of the few totally nocturnal cicindeline genera, published by Castelnau (1863), Lucas (1883) and Si- but at least did not perpetuate the ‘snail-shell breaker’ mon (1894). Péringuey (1893) provided a more de- myth. Rather, his summary of the mandibular am- tailed account of the habits of adult Manticora, his plexus and contact-guarding of females by male tiger observations and interpretations being, in compari- beetles implicitly applies to Manticora as well and is in son with those of later authors, remarkably acute and agreement with both Péringuey’s (1893) early obser- accurate, if somewhat anthropomorphic (‘ … perched vations and with our own conclusions regarding the high on their legs [they] move about in the dry barren function of the apparently allometrically developed plains of the Karoo, in a jerky impetuous manner, mandibles of the males (see below). which implies a bold, fearless temper, evidently aware Oberprieler & Grobbelaar (1991) published a pre- of its physical power.’, p. 3). Although Péringuey liminary, popular version of the observations on M. could not ascertain the precise identity of the natural latipennis Waterhouse, detailed below, sketching the prey species of these beetles, he judiciously suspected general life history and behaviour of the genus. Wern- that a common grasshopper and termites served as the er & Wiesner (1995) added a (correct) observation on principal food of the adults and larvae, respectively. the daily activity period of M. mygaloides (‘damaren- He also noticed the sexual dimorphism of the sis’) and a vague one as ‘hunting for myrmopods and mandibles and recognized that their greater develop- [the tenebrionid] Psammodes vialis’. ment in the male ‘has probably been acquired for the The first (but superficial) description of a larva of purpose of seizing hold, as they do, of the broad neck Manticora was given by Kolbe (1885), based on a spec- of the female for mating’. Perhaps most significantly, imen from the ‘Mission Barmen in Afr. merid. occid.’ he realized that the great variability in size and devel- (evidently the present Gross-Barmen near Okahandja opment of characters in these wingless beetles is large- in Namibia, 22.05S 16.44E) assignable to M. myga- ly due to their limited vagility and consequent isola- loides Thomson (see taxonomic notes below). Shortly tion of populations, as well as to greatly varying climatic afterwards, Péringuey (1893) described the larva of M. conditions and availability of food in their generally tuberculata de Geer from Vanwyksvlei in the Cape drought-prone habitats. Province of South Africa (30.21S 21.49E). Horn Later authors were less astute and careful in their (1915) illustrated a larva of M. tuberculata tibialis Bo- observations and interpretations of the habits of Man- heman but gave no proper description nor details of its ticora. Poulton & Marshall (1902) compared it with origin (but see Material examined). Much later, Leffler the similar-sized and -coloured genus Anthia (Cara- (1980) described a defective larva of M. latipennis from bidae) and argued that it has ‘a similar warning atti- Beira in Mozambique (19.50S 34.55E), but some of tude … but it cannot project its protective secretion, the characters he described are evidently incorrect (see which merely exudes when it is handled; the liquid below). Putchkov & Arndt (1994) included Manticora also is not acid as in Anthia, but possesses a strong in their key to all known tiger beetle larvae and illus- smell.’ – a complete fabrication since Manticora does trated several important characters. not exude any noticeable defensive secretion. Thiele (1977) portrayed Manticora as representing an ex- MATERIAL AND METHODS treme case of ‘procerization’, as typical in snail-shell breaking carabids, and suggested the large develop- Populations studied ment of its mandibles to be an adaptation to particu- The observations reported here were undertaken larly large and resistant prey such as scorpions – in to- over a period of twenty years both in the field in the tal ignorance of the evident sexual dimorphism of natural habitats of these beetles as well as in captivity these structures. Roer (1984), who published the most in Pretoria, South Africa. Adult beetles and larvae comprehensive study of Manticora behaviour to date, from several populations were kept in captivity al- refuted Thiele’s hypothesis that these beetles are spe- most continuously from 1984 to 1996. Detailed ob- cialized scorpion predators in a laboratory experiment. servations and experiments were carried out from one However, he espoused the ‘snail-shell breaker con- population in the Northern Cape Province and two cept’, applying it instead to strongly sclerotized prey in the former Transvaal Province (currently Northern such as apterous, terrestrial tenebrionid beetles (even Province and Gauteng) of South Africa, with addi- though his own experiments demonstrated that Man- tional observations from populations in northern and ticora cannot crush sclerotized Onymacris species). central Namibia and the Northern Cape Province Further, he alleged that Manticora is essentially a noc- and the Northern Province of South Africa. turnal hunter that tracks its prey visually – apart from Our first observations were by the senior author on being almost contradictory, both
Recommended publications
  • Recovery Plan for Northeastern Beach Tiger Beetle
    Northeastern Beach Tiger Beetle, (Cincindela dorsalisdorsal/s Say) t1rtmow RECOVERY PLAN 4.- U.S. Fish and Wildlife Service SFAVI ? Hadley, Massachusetts September 1994 C'AZ7 r4S \01\ Cover illustration by Katherine Brown-Wing copyright 1993 NORTHEASTERN BEACH TIGER BEETLE (Cicindela dorsalis dorsalis Say) RECOVERY PLAN Prepared by: James M. Hill and C. Barry Knisley Department of Biology Randolph-Macon College Ashland, Virginia in cooperation with the Chesapeake Bay Field Office U.S. Fish and Wildlife Service and members of the Tiger Beetle Recovery Planning-Group Approved: . ILL Regi Director, Region Five U.S. Fish and Wildlife Service Date: 9 29- ~' TIGER BEETLE RECOVERY PLANNING GROUP James Hill Philip Nothnagle Route 1 Box 2746A RFD 1, Box 459 Reedville, VA Windsor, VT 05089 Judy Jacobs Steve Roble U.S. Fish and Wildlife Service VA Natural Heritage Program Annapolis Field Office Main Street Station 177 Admiral Cochrane Drive 1500 East Main Street Annapolis, MD 21401 Richmond, VA 23219 C. Barry Knisley Tim Simmons Biology Department The Nature Conservancy Massachusetts Randolph-Macon College Field Office Ashland, VA 23005 79 Milk Street Suite 300 Boston, MA 02109 Laurie MacIvor The Nature Conservancy Washington Monument State Park 6620 Monument Road Middletown, MD 21769 EXECUTIVE SUMMARY NORTHEASTERN BEACH TIGER BEETLE RECOVERY PLAN Current Status: This tiger beetle occurred historically "in great swarms" on beaches along the Atlantic Coast, from Cape Cod to central New Jersey, and along Chesapeake Bay beaches in Maryland and Virginia. Currently, only two small populations remain on the Atlantic Coast. The subspecies occurs at over 50 sites within the Chesapeake Bay region.
    [Show full text]
  • Mitochondrial Genomes Resolve the Phylogeny of Adephaga
    1 Mitochondrial genomes resolve the phylogeny 2 of Adephaga (Coleoptera) and confirm tiger 3 beetles (Cicindelidae) as an independent family 4 Alejandro López-López1,2,3 and Alfried P. Vogler1,2 5 1: Department of Life Sciences, Natural History Museum, London SW7 5BD, UK 6 2: Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, UK 7 3: Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Campus 8 Mare Nostrum, 30100, Murcia, Spain 9 10 Corresponding author: Alejandro López-López ([email protected]) 11 12 Abstract 13 The beetle suborder Adephaga consists of several aquatic (‘Hydradephaga’) and terrestrial 14 (‘Geadephaga’) families whose relationships remain poorly known. In particular, the position 15 of Cicindelidae (tiger beetles) appears problematic, as recent studies have found them either 16 within the Hydradephaga based on mitogenomes, or together with several unlikely relatives 17 in Geadeadephaga based on 18S rRNA genes. We newly sequenced nine mitogenomes of 18 representatives of Cicindelidae and three ground beetles (Carabidae), and conducted 19 phylogenetic analyses together with 29 existing mitogenomes of Adephaga. Our results 20 support a basal split of Geadephaga and Hydradephaga, and reveal Cicindelidae, together 21 with Trachypachidae, as sister to all other Geadephaga, supporting their status as Family. We 22 show that alternative arrangements of basal adephagan relationships coincide with increased 23 rates of evolutionary change and with nucleotide compositional bias, but these confounding 24 factors were overcome by the CAT-Poisson model of PhyloBayes. The mitogenome + 18S 25 rRNA combined matrix supports the same topology only after removal of the hypervariable 26 expansion segments.
    [Show full text]
  • Chapter 13 SOUTHERN AFRICA
    Chapter 13 Zimbabwe Chapter 13 SOUTHERN AFRICA: ZIMBABWE Taxonomic Inventory Taxa and life stages consumed Coleoptera Buprestidae (metallic woodborers) Sternocera funebris (author?), adult Sternocera orissa Buquet, adult Scarabaeidae (scarab beetles) Lepidiota (= Eulepida) anatine (author?), adult Lepidiota (= Eulepida) masnona (author?), adult Lepidiota (= Eulepida)nitidicollis (author?), adult Miscellaneous Coleoptera Scientific name(s) unreported Hemiptera Pentatomidae (stink bugs) Euchosternum (= Haplosterna; = Encosternum) delegorguei (Spinola) (= delagorguei), adult Pentascelis remipes (author?), adult Pentascelis wahlbergi (author?), adult Miscellaneous Hemiptera Scientific name(s) unreported Homoptera Cicadidae (cicadas) Loba leopardina (author?) Hymenoptera Apidae (honey bees) Trigona spp., larvae Formicidae (ants) Carebara vidua Sm., winged adult Isoptera Termitidae Macrotermes falciger Gerstacker (= goliath), winged adult, soldier, queen Macrotermes natalensis Haviland Lepidoptera Lasiocampidae (eggar moths, lappets) Lasiocampid sp., larva Limacodidae (slug caterpillars) Limacodid sp. Notodontidae (prominents) Anaphe panda (Boisdv.), larva Saturniidae (giant silkworm moths) Bunaea (= Bunea) alcinoe (Stoll), larva Bunaea sp., larva Cirina forda (Westwood), larva 1 of 12 9/20/2012 2:02 PM Chapter 13 Zimbabwe Gonimbrasia belina Westwood, larva Goodia kuntzei Dewitz (?), larva Gynanisa sp. (?), larva Imbrasia epimethea Drury, larva Imbrasia ertli Rebel, larva Lobobunaea sp., larva Microgone sp., (?), larva Pseudobunaea sp. (?),
    [Show full text]
  • Infestation and Damage Caused to Vitellaria Paradoxa Gaertn. F
    Infestation and Damage Caused to Vitellaria paradoxa Gaertn. F. (Sapotaceae) by Cirinaforda Westwood [Lepidoptera: Saturniidae] in Benue State, Nigeria. AGBIDYE, F. S.*, OFUYA, T. 1. IANDAKINDELE, S. 0.2 Department of Forest Production and Products, University of Agriculture, Makurdi, P. M. B. 2373, Makurdi, Nigeria. Nig. 1. Ent. 25:75-81 (2008) ABSTRACT. The infestation of sheabutter tree, Vitellaria paradoxa Gartner. F., by the pallid emperor moth, Cirinaforda Westwood, was studied from 2004-2006 inAye Gber and Akaa Pila in Benue State, Nigeria. Observations were made on adult emergence from soil, copulation behaviour, oviposition, incubation period, larval density, feeding within tree canopy, damage, and natural enemies. Ten leaves were randomly selected from the lower, middle, and upper strata of the crown and the numbers oflarvae on them were counted and transformed to-J x + 0.5 for analysis. Defoliation was rated on a scale from 0-2 and transformed to Log 10 before analysis. Moths of C forda emerged from the soil around the base of V paradoxa from the last week of May in each year. Larval densities were high in the first two weeks of sampling, declining significantly thereafter. Larval density was significantly higher (P<0.05) in the lower stratum of the crown compared to the middle or upper stratum. Locational differences in larval density were not significant (tu>0.05) although numerically higher density was observed at Aye Gber than at Akaa Pila in 2004 -2006. The trees were partially defoliated in 2004 and 2005 but were completely defoliated in 2006 at both locations. Three insect predators: Crematogaster sp.
    [Show full text]
  • Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Traditional consumption of and rearing edible insects in Africa, Asia and Europe Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán & António Raposo To cite this article: Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán & António Raposo (2018): Traditional consumption of and rearing edible insects in Africa, Asia and Europe, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2018.1440191 To link to this article: https://doi.org/10.1080/10408398.2018.1440191 Accepted author version posted online: 15 Feb 2018. Published online: 15 Mar 2018. Submit your article to this journal Article views: 90 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2018.1440191 Traditional consumption of and rearing edible insects in Africa, Asia and Europe Dele Raheema,b, Conrado Carrascosac, Oluwatoyin Bolanle Oluwoled, Maaike Nieuwlande, Ariana Saraivaf, Rafael Millanc, and Antonio Raposog aDepartment for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; bFaculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
    [Show full text]
  • Harvesting and Processing Techniques for the Larvae Of
    123 HARVESTING AND PROCESSING TECHNIQUES FOR THE LARVAE OF THE PALLID EMPEROR MOTH, CIRINA FORDA WESTWOOD (LEPIDOPTERA: SATURNIIDAE), AMONG THE TIV PEOPLE OF BENUE STATE, NIGERIA. *Agbidye, F. S.12 and Nongo, N. N. 1Department of Forest Production and Products, University of Agriculture Makurdi, P. M. B. 2373, Makurdi, Nigeria. E-mail: [email protected], GSM: +234-805-728-1144 2Department of Veterinary Parasitology and Entomology, University of Agriculture Makurdi, P. M. B. 2373, Makurdi, Nigeria. *Corresponding Author ABSTRACT The manner in which edible insects are harvested and processed affects their nutrient content, shelf life as well as their acceptability among different socio-economic groups. Raw extracts of Cirina forda larvae had been reported to have toxic effects on rats compared to processed extracts. The study therefore investigated the techniques employed by the Tiv people of Benue State, Nigeria, in harvesting C. forda larvae from its sole host tree in the country, the sheabutter tree, Vitellaria paradoxa. The processing techniques for the insect larva, the conservation strategies employed by the natives to ensure sustainability of the insect resource alongside the survival strategies used by the insect were also investigated. One hundred and twenty (120) copies of semi-structured questionnaire were administered in three (3) Tiv speaking Local Government Areas (Gboko, Katsina-Ala and Tarka). Data obtained were subjected to log transformation (Log10) and then to one-way ANOVA. Results showed significant differences among the harvesting and processing techniques as well as conservation and survival strategies (p>0.05). Picking larvae from pitfall traps had the highest mean frequency (38.3±9) among the harvesting techniques while storing briefly to defecate, parboiling and then sun-drying had the highest mean frequency (36.9±5) among the processing techniques.
    [Show full text]
  • Psyche, 1967 Vol
    PSYCHE, 1967 VOL. 74, PLATE Sphecomyrma freyi, worker no. 1, holotype. PSYCHE Vol. 74 March, I967 No. THE FIRST MESOZOIC ANTS, WITH THE DESCRIPTION OF A NEW SUBFAMILY BY EDwaRt) O. WILSOr, FRANI M. CARPENTER, and WILLIAM L. BROWN, JR. INTRODUCTION Our knowledge of the fossil record of the ants, and with it the fossil record of the social insects generally, has previously extended back only to the Eocene Epoch (Carpenter, 1929, I93o). In the Baltic amber and Florissant shales of Oligocene age, and in the Sicilian amber of Miocene age, there exists a diverse array of ant tribes and genera, many of which still survive today (Emery, I89I; Wheeler, I914; Carpenter, I93O). The diversity of this early Cenozoic ant fauna has long prompted entomologists to look to the Cretaceous for fossils that might link the ants to the non-social aculeate wasps and thereby provide a concrete clue concerning the time and circumstances of the origin of social life in ants; but until now no fossils of ants or any other social insects of Cretaceous age have come to light (Bequaert and Carpenter, 1941; Emerson, 1965) and we have not even had any solid evidence for the existence of Hymenoptera Aculeata before the Tertiary. There does exist one Upper Cretaceous fossil of possible significance to aculeate and thus to ant evolution. This is the hymenopterous forewing from Siberia described by Sharov (1957) as Cretavus sibiricus, and placed by him in a new family Cretavidae under the suborder Aculeata. As Sharov notes, the wing venation of Cretav:us does 'resemble that of the bethyloid (or scolioid) wasp family Plumariidae, a group that has been mentioned in connection with formicid origins.
    [Show full text]
  • Influence of Vitellaria Paradoxa Gaertn Depletion on the Incidence
    Muhammad and Ande: The Influence of Viterllaria Paradoxa Gaertn Depletion 31 NJE Vol. 35: 31-43, 2019 Nigerian Journal of Entomology Published by the Entomological Soc. of Nig. www.esnjournal.com.ng DOI. 10.36108/NJE/9102/53.01.40 1965 Influence of Vitellaria Paradoxa Gaertn Depletion on the Incidence, Abundance and Distribution of Cirina Forda Westwood (Lepidoptera: Saturniidae) in Niger State, Nigeria Muhammad, M. I. 1 and Ande, A. T. 2 1Department of Pest Management Technology, College of Agriculture, P.M.B, 109, Mokwa, Niger State 2Department of Zoology, University of Ilorin, Ilorin, Kwara State, Nigeria Abstract The pallid emperor moth, Cirina forda, is a prominent edible insect in Niger State but currently at great risk of extinction. The incidence, abundance and distribution of Cirina forda, was investigated for four consecutive seasons, i.e. May-June 2010, 2011, 2012 and 2013 to ascertain the effect of the depletion of its host plant, Shea butter trees, Vitellaria paradoxa. in Niger State, Nigeria. C. forda egg clusters located on the host plants were enumerated to ascertain the seasonal abundance by visual counting using hand lenses and binoculars (MARCO-model 750/8 m-988000 m). At each location, 100m 2 land area in which three 10m 2 portions were mapped as replicate sites, were investigated for host plant density, egg cluster abundance and distribution within three host plant canopy height ranges. The 41 locations in six Local Government Areas (LGAs) where C. forda occurred in Niger State in 2010 were investigated. The result indicated the GPS of each of the locations and showed that Niger state had a very rich but fast dwindling population of V.
    [Show full text]
  • Description of a New Genus of Primitive Ants from Canadian Amber
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Psyche, 1967 Vol
    PSYCHE, 1967 VOL. 74, PLATE Sphecomyrma freyi, worker no. 1, holotype. PSYCHE Vol. 74 March, I967 No. THE FIRST MESOZOIC ANTS, WITH THE DESCRIPTION OF A NEW SUBFAMILY BY EDwaRt) O. WILSOr, FRANI M. CARPENTER, and WILLIAM L. BROWN, JR. INTRODUCTION Our knowledge of the fossil record of the ants, and with it the fossil record of the social insects generally, has previously extended back only to the Eocene Epoch (Carpenter, 1929, I93o). In the Baltic amber and Florissant shales of Oligocene age, and in the Sicilian amber of Miocene age, there exists a diverse array of ant tribes and genera, many of which still survive today (Emery, I89I; Wheeler, I914; Carpenter, I93O). The diversity of this early Cenozoic ant fauna has long prompted entomologists to look to the Cretaceous for fossils that might link the ants to the non-social aculeate wasps and thereby provide a concrete clue concerning the time and circumstances of the origin of social life in ants; but until now no fossils of ants or any other social insects of Cretaceous age have come to light (Bequaert and Carpenter, 1941; Emerson, 1965) and we have not even had any solid evidence for the existence of Hymenoptera Aculeata before the Tertiary. There does exist one Upper Cretaceous fossil of possible significance to aculeate and thus to ant evolution. This is the hymenopterous forewing from Siberia described by Sharov (1957) as Cretavus sibiricus, and placed by him in a new family Cretavidae under the suborder Aculeata. As Sharov notes, the wing venation of Cretav:us does 'resemble that of the bethyloid (or scolioid) wasp family Plumariidae, a group that has been mentioned in connection with formicid origins.
    [Show full text]
  • Psyche, 1967 Vol
    PSYCHE, 1967 VOL. 74, PLATE Sphecomyrma freyi, worker no. 1, holotype. PSYCHE Vol. 74 March, I967 No. THE FIRST MESOZOIC ANTS, WITH THE DESCRIPTION OF A NEW SUBFAMILY BY EDwaRt) O. WILSOr, FRANI M. CARPENTER, and WILLIAM L. BROWN, JR. INTRODUCTION Our knowledge of the fossil record of the ants, and with it the fossil record of the social insects generally, has previously extended back only to the Eocene Epoch (Carpenter, 1929, I93o). In the Baltic amber and Florissant shales of Oligocene age, and in the Sicilian amber of Miocene age, there exists a diverse array of ant tribes and genera, many of which still survive today (Emery, I89I; Wheeler, I914; Carpenter, I93O). The diversity of this early Cenozoic ant fauna has long prompted entomologists to look to the Cretaceous for fossils that might link the ants to the non-social aculeate wasps and thereby provide a concrete clue concerning the time and circumstances of the origin of social life in ants; but until now no fossils of ants or any other social insects of Cretaceous age have come to light (Bequaert and Carpenter, 1941; Emerson, 1965) and we have not even had any solid evidence for the existence of Hymenoptera Aculeata before the Tertiary. There does exist one Upper Cretaceous fossil of possible significance to aculeate and thus to ant evolution. This is the hymenopterous forewing from Siberia described by Sharov (1957) as Cretavus sibiricus, and placed by him in a new family Cretavidae under the suborder Aculeata. As Sharov notes, the wing venation of Cretav:us does 'resemble that of the bethyloid (or scolioid) wasp family Plumariidae, a group that has been mentioned in connection with formicid origins.
    [Show full text]
  • The Utilization of Insects As a Sustainable and Secure Source of Animal-Based Food for the Human Diet Has Continued to Incr
    Geo-Eco-Trop, 2016, 40-2, n.s.: 145-174 Preliminary knowledge for breeding edible caterpillars in Congo-Brazzaville Connaissances préliminaires pour l’élevage de chenilles comestibles au Congo-Brazzaville Germain MABOSSY-MOBOUNA1, Thierry BOUYER2, Paul LATHAM3, Paulette ROULON- DOKO4, Augustin KONDA KU MBUTA5, François MALAISSE6,7 Résumé: La consommation humaine de Lépidoptères est un thème à la mode. Si une information de base est à présent disponible concernant la diversité des chenilles consommées en République du Congo-Brazzaville, nous ne disposons pas de données préliminaires solides concernant leur distribution, la littérature qui leur a été consacrées, leur saisonnalité et leur cycle de vie, leurs dénominations locales et leurs plantes hôtes. C’est l’objet du présent article, qui en outre permet de dégager les domaines qui nécessitent des études plus approfondies. Vingt taxons sont pris en considération, dont seize identifiés au niveau de l’espèce. Seuls deux cycles de vie sont à présent connus. Quatre-vingt-neuf noms vernaculaires sont cités. Ces chenilles se nourrissent d’au moins 40 plantes hôtes qui sont citées ainsi que des sources de documentation concernant ces dernières. Mots-clés : Congo-Brazzaville, Lépidoptères, chenilles consommées, distribution, dénominations vernaculaires, plantes hôtes, cycle de vie, valeurs alimentaires. Abstract: Human consumption of Lepidoptera is a subject of current interest. Though basic information is presently available regarding the diversity of caterpillars eaten in Congo-Brazzaville, no robust data regarding their distribution, reference material, seasonality and life cycle, local names and host-plants is available. The purpose of this article, which also identifies areas that require further study, is to address this gap.
    [Show full text]