Lattice Gauge Theory in Terms of Independent Wilson Loops R
I ~LIIIIll l~_l LIml 5"dh~!(111 g| PROCEEDINGS Nuclear Physics B (Proc. Suppl.) 30 (1993) 224-227 SUPPLEMENTS North-Holland Lattice gauge theory in terms of independent Wilson loops R. Lolla * aPhysics Department, Syracuse University Syracuse, NY 13244-1130, U.S.A. We discuss the construction of a complete set of independent Wilson loops Tr P exp ~w A that allows one to formulate the physics of pure lattice gauge theory directly on the subspace of physical configurations, and report on progress in recasting the theory in terms of these variables. 1. THE NEW LOOP APPROACH set of gauge orbits in A (G is the group of local gauge transformations), the right-hand side de- The mathematical ingredients necessary in the notes the set of complex-valued functions on loop description of our general approach consist of a d- space, subject to a set of so-called Mandelstam dimensional manifold I3d, d = 2, 3, 4, a Yang-Mills constraints. These can be seen as deriving from gauge group G C Gl(n, C), and a representation identities satisfied by the traces of n × n-matrices. R of G on a linear space Vn. A path is a continu- They are algebraic equations non-linear in T, and ous mapping 3': [0, 1] ---* I] a. If 3'(0) = 3'(1), 3' is their form depends on G and R, in particular the called a loop. For each loop 3', we define on the dimensionality n of VR. configuration space .4 of pure Yang-Mills theory Our aim is to recast the tbeory, given in terms the path-ordered exponential of the local and gauge-covariant gauge poten- tials A(x), in terms of the non-local and gauge- U,~(7) := Pexpig/A~(7(t));ru(t)dt.
[Show full text]