10 Field Theory on a Lattice

Total Page:16

File Type:pdf, Size:1020Kb

10 Field Theory on a Lattice 10 Field Theory on a Lattice 10.1 Scalar Fields To represent a hermitian field φ(x), we put a real number φ(i, j, k, `) at each vertex of the lattice and set x = a(i, j, k, `) (10.1) where a is the lattice spacing. The derivative @iφ(x) is approximated as φ(x + ˆi) φ(x) @ φ(x) − (10.2) i ⇡ a in which x is the discrete position 4-vector and ˆi is a unit 4-vector pointing in the i direction. So the euclidian action is the sum over all lattice sites of 1 1 S = (@ φ(x))2 a4 + m2 φ2(x) a4 e 2 i 2 x X 1 2 1 = φ(x + ˆi) φ(x) a2 + m2 φ2(x) a4 2 − 2 0 (10.3) x ⇣ ⌘ X1 1 = φ(x + ˆi)φ(x) a2 + 8+m2 φ2(x) a4 − 2 2 0 xi X if the self interaction happens to be quartic. 1 1 λ S = (@ φ(x))2 a4 + m2 φ2(x) a4 + φ4(x) a4 (10.4) e 2 i 2 0 4 if the self interaction happens to be quartic. 10.2 Pure Gauge Theory 249 10.2 Pure Gauge Theory The gauge-covariant derivative is defined in terms of the generators ta of a compact Lie algebra [ta,tb]=ifabctc (10.5) b and a gauge-field matrix Ai = igAi tb as D = @ A = @ igAb t (10.6) i i − i i − i b summed over all the generators, and g is a coupling constant. Since the group is compact, we may raise and lower group indexes without worrying about factors or minus signs. The Faraday matrix is F =[D ,D ]=[I@ A (x),I@ A (x)] = @ A +@ A +[A ,A ] (10.7) ij i j i − i j − j − i j j i i j in matrix notation. With more indices exposed, it is (F ) =( @ A + @ A +[A ,A ]) ij cd − i j j i i j cd b b b b b e e (10.8) = igtcd @iAj @jAi + [igt Ai ,igt Aj] . − − cd ⇣ ⌘ ⇣ ⌘ Summing over repeated indices, we get b b b 2 b e b e (Fij)cd = igtcd @iAj @jAi g Ai Aj [t ,t ] − − − cd ⇣ ⌘ ⇣ ⌘ = igtb @ Ab @ Ab g2AbAeif tf − cd i j − j i − i j bef cd b ⇣ b b⌘ 2 b e f = igtcd @iAj @jAi ig Ai Ajfbef tcd − − − (10.9) ⇣ ⌘ = igtb @ Ab @ Ab ig2Af Aef tb − cd i j − j i − i j feb cd ⇣ ⌘ = igtb @ Ab @ Ab + gAf Aef − cd i j − j i i j feb ⇣ ⌘ = igtb @ Ab @ Ab + gf Af Ae = igtb F b − cd i j − j i bfe i j − cd ij ⇣ ⌘ where F b = @ Ab @ Ab + gf Af Ae (10.10) ij i j − j i bfe i j is the Faraday tensor. The action density of this tensor is 1 L = F b F ij. (10.11) F − 4 ij b 250 Field Theory on a Lattice The trace of the square of the Faraday matrix is ij b b c ij Tr FijF =Tr igt Fij igt Fc ⇥ ⇤ = hg2F b F ij Tr(tbtci)= g2F b F ij kδ (10.12) − ij c − ij c bc = kg2 F b F ij. − ij b So the Faraday action density is 1 1 1 L = F b F ij = Tr F F ij = Tr F F ij . (10.13) F − 4 ij b 4kg2 ij 2g2 ij ⇥ ⇤ ⇥ ⇤ The theory described by this action density, without scalar or spinor fields, is called pure gauge theory. The purpose of a gauge field is to make the gauge-invariant theories. So if a field a is transformed by the group element g(x) a0 (x)=g(x)ab b(x), (10.14) then we want the covariant derivative of the field to go as (Di (x))0 = @i A0 (x) g(x) (x) − i (10.15) = g(x)D (x)=g(x)[(@ A (x)) (x)] . i i − i So the gauge field must go as @ g A0 g = gA (10.16) i − i − i or as 1 1 Ai0 (x)=g(x)Ai(x)g− (x)+(@ig(x))g− (x). (10.17) So if g(x)= exp( i✓a(x)ta), then a gauge transforms as − i✓a(x)ta i✓a(x)ta i✓a(x)ta i✓a(x)ta Ai0 (x)=e− Ai(x) e +(@ie− ) e . (10.18) How does an exponential of a path-ordered, very short line integral of gauge fields go? We will evaluate how the path-ordered exponential in which g0 is a coupling constant i 1 1 i P exp g0Ai(x)dx 0 = P exp g(x)g0Ai(x)g− (x)+(@ig(x))g− (x) dx ⇣h 1 i i ⌘ = P exp g(x)g0Ai(x)g− (x)+@i log g(x) dx ⇣h i ⌘(10.19) changes under the gauge transformation (10.18) in the limitt dxi 0. We ! 10.3 Pure Gauge Theory on a Lattice 251 find i i g0Ai(x)dx 1 P exp g0Ai(x)dx 0 = P g(x)e g− (x) logh g(x+dxi/2) log g(x)+log g(x) log g(x dxi/2) e − − − ⇥ i g0A (x)dx 1 i = P g(x)e i g− (x) (10.20) h i 1 1 i g(x + dx /2)g− (x)g(x)g− (x dx /2) ⇥ − i i g0A (x)dx 1 i i = g(x + dx /2)e i g− (x dx /2). − Putting together a chain of such infinitesimal links, we get x x i 0 i 1 P exp g0Ai(x0)dx0 = g(x)P exp g0Ai(x0)dx0 g− (y). (10.21) ✓Zy ◆ ✓Zy ◆ In particular, this means that the trace of a closed loop is gauge invariant i 0 i 1 TrP exp g0Ai(x)dx =Trg(x)P exp g0Ai(x)dx g− (x) ✓I ◆ ✓I ◆ i =TrP exp g0Ai(x)dx . ✓I ◆ (10.22) 10.3 Pure Gauge Theory on a Lattice Wilson’s lattice gauge theory is inspired by these last two equations. Another source of inspiration is the approximation for a loop of tiny area dx dy ^ which in the joint limit dx 0 and dy 0is ! ! i W = P exp g0Ai(x)dx =exp g0 Ay,x Ax,y + g0[Ax,Ay] dxdy − ✓I ◆ h ⇣ ⌘ i =exp g F dxdy . − 0 xy ⇣ ⌘ (10.23) To derive this formula, we will ignore the bare coupling constant g0 for the moment and apply the Baker-Campbell-Hausdorf identity 1 1 1 eA eB =exp A + B + [A, B]+ [A, [A, B]] + [B,[B,A]] + ... 2 12 12 ✓ (10.24)◆ 252 Field Theory on a Lattice to the product W =exp Ax dx exp Ay dy + Ay,x dxdy (10.25) ⇣ ⌘ ⇣ ⌘ exp Ax dx Ax,y dxdy exp Ay dy . ⇥ − − − We get ⇣ ⌘ ⇣ ⌘ 1 W =exp Ax dx + Ay dy + Ay,x dxdy + [Ax dx, (Ay + Ay,x dx)dy] 2 ⇣ 1 ⌘ exp Ax dx Ay dy Ax,y dxdy + [(Ax + Ax,y dy)dx, Ay dy] . ⇥ − − − 2 ⇣ (10.26)⌘ Applying again the BCH identity, we get W =exp Ay,x Ax,y +[Ax,Ay] dxdy =exp Fxy dxdy , (10.27) − an identity thath⇣ is the basis of lattice gauge⌘ i theory. ⇣ ⌘ Restoring g0, we divide the trace of W by the dimension n of the matrices ta and subtract from unity 1 1 1 Tr P exp g A (x)dxi =1 Tr exp g F dxdy − n 0 i − n 0 xy ✓I ◆ (10.28) 1 1 h2 ⇣ ⌘i = Tr g F dxdy + g F dxdy . − n 0 xy 2 0 xy h ⇣ ⌘ i The generators of SU(n), SO(n), and Sp(2n) are traceless, so the first term vanishes, and we get 1 1 2 1 Tr P exp g A (x)dxi = Tr g F dxdy . (10.29) − n 0 i − 2n 0 xy ✓I ◆ ⇣ ⌘ Recalling the more explicit form (10.9) of the Faraday matrix, we have 1 g2 kg2 1 Tr(W )= 0 Tr t F a t F b dxdy 2 = 0 F a dxdy 2 (10.30) − n 2n a xy b xy 2n xy h i in which k is the constant of the normalization Tr(tatb)=kδab. For SU(2) with ta = σa/2 and for SU(3) with ta = λa/2, this constant is k =1/2. The Wilson action is a sum over all the smallest squares of the lattice, called the plaquettes, of the quantity n 1 1 a 2 4 S2 = 1 Tr(W ) = F a (10.31) 2kg2 − n 4 ij 0 in which a is the lattice spacing. The full Wilson action is the sum of this quantity over all the elementary squares of the lattice and over i, j = 1, 2, 3, 4..
Recommended publications
  • Lecture 3-7: General Formalism at Finite Temperature
    Lecture 3-7: General formalism at finite temperature Reference: Negele & Orland (N&O) Chapter 2 Lecture 3 Introduction Quantum statistical mechanics (Home reading) Three ensembles: microcanonical, canonical, grand canonical essemble Partition function and thermodynamics Physical response functions and Green’s function Consider a system subjected to a time-dependent external field, where the operators and corresponding states are in the Schrödinger picture. We shall study the system through the evolution operator. Time-ordered operator product where Time-ordered exponential t t where b a and t t n. It may be expanded in a Taylor series as follows, M n a The evolution operator Using the time-ordered exponential, the evolution operator may be written It is easy to verify that it satisfies the equation of motion and the boundary condition The response to an infinitesimal perturbation in the external field The Schrödinger picture and the Heisenberg picture. (Home reading) The response of a wavefunction to an infinitesimal perturbation by an external field is given by the functional derivative where the operator and the state in the Heisenberg picture is related to the operator in the Schrödinger picture by and Now, consider the response of the expectation value of an operator to an infinitesimal perturbation in the external field. ˆ ˆ The response of a measurement of O2 (t2 ) to a perturbation couple to O1 is specified by the response function, The above is one of century results in this chapter. The n-body real-time Green’s function The n-body imaginary-time Green’s function where Approximation strategies (Home reading) Asymptotic expansions Weak coupling and strong coupling Functional integral formulation A powerful tool for the study of many-body systems The Feynman path integral for a single particle system A different formulation to the canonical formalism, the propagator (or the matrix element of the evolution operator) plays the basic role.
    [Show full text]
  • Notas De Física CBPF-NF-011/96 March 1996
    CBPF CENTRO BRASILEIRO DE PESQUISAS FÍSICAS Rio de Janeiro Notas de Física CBPF-NF-011/96 March 1996 Non-Abelian BF Theories With Sources and 2-d Gravity J. P. Lupi, A. Restuccia and J. Stephany CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico VOL. 2 ( í:1 " CBPF-NF-011/96 Non-Abelian BF Theories With Sources and 2-d Gravity by J. P. Lupi1, A. Restuccia1 and J. Stephany1'* "Centro Brasileiro de Pesquisas Físicas - CBPF "Departamento de Campos e Partículas Rua Dr. Xavier Sigaud, 150 22290-180 - Rio de Janeiro, RJ - Brazil ^niversidad Simón Bolívar, Departamento de Física, Apartado Postal 89000, Caracas 1080-A, Venezuela e-mail: [email protected], [email protected], [email protected] ABSTRACT r (We study the interaction of non-Abelian topological BF theories defined on two dimensional manifolds with point sources carrying non-Abelian charges. We identify the most general solution for the field equations on simply and multiply connected two- manifolds. Taking the particular choice of the so-called extended Poincaré group as the gauge group we discuss how recent discussions of two dimensional gravity models do fit in this formalism. J Key-words: BF theories; 2-d gravity. - 1 - CBPF-NF-011/96 1 Introduction The adequate description of classical and first quantized relativistic objects, like particles and strings, is an essential point of discussion in any attempt to set a unified model of physical interactions, Our understanding of this issue for relativistic objects has been continually improved in recent years mainly by the application of BRST techniques, In particular, a satisfactory relativistic covariant treatment of isolated scalar [1] and spin- ning particles [2], and more recently, superparticles [3] which allows to discuss most of the kinematical aspects of such systems have been developed.
    [Show full text]
  • Arxiv:1412.2393V4 [Gr-Qc] 27 Feb 2019 2.6 Geodesics and Normal Coordinates
    Riemannian Geometry: Definitions, Pictures, and Results Adam Marsh February 27, 2019 Abstract A pedagogical but concise overview of Riemannian geometry is provided, in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints, some of which would seem to be novel to the literature. Topics are avoided which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations. As much material as possible is developed for manifolds with connection (omitting a metric) to make clear which aspects can be readily generalized to gauge theories. The presentation in most cases does not assume a coordinate frame or zero torsion, and the coordinate-free, tensor, and Cartan formalisms are developed in parallel. Contents 1 Introduction 2 2 Parallel transport 3 2.1 The parallel transporter . 3 2.2 The covariant derivative . 4 2.3 The connection . 5 2.4 The covariant derivative in terms of the connection . 6 2.5 The parallel transporter in terms of the connection . 9 arXiv:1412.2393v4 [gr-qc] 27 Feb 2019 2.6 Geodesics and normal coordinates . 9 2.7 Summary . 10 3 Manifolds with connection 11 3.1 The covariant derivative on the tensor algebra . 12 3.2 The exterior covariant derivative of vector-valued forms . 13 3.3 The exterior covariant derivative of algebra-valued forms . 15 3.4 Torsion . 16 3.5 Curvature .
    [Show full text]
  • Time-Ordered Exponential for Unbounded Operators with Applications to Quantum Field Theory
    Title Time-ordered Exponential for Unbounded Operators with Applications to Quantum Field Theory Author(s) 二口, 伸一郎 Citation 北海道大学. 博士(理学) 甲第11798号 Issue Date 2015-03-25 DOI 10.14943/doctoral.k11798 Doc URL http://hdl.handle.net/2115/58756 Type theses (doctoral) File Information Shinichiro_Futakuchi.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Time-ordered Exponential for Unbounded Operators with Applications to Quantum Field Theory (非有界作用素に対する time-ordered exponential と 場の量子論への応用) A dissertation submitted to Hokkaido University for the degree of Doctor of Sciences presented by Shinichiro Futakuchi Department of Mathematics Graduate School of Science Hokkaido University advised by Asao Arai March 2015 Abstract Time-ordered exponential is a fundamental tool in theoretical physics and mathematical physics, and often used in quantum theory to give the perturbative expansion of significant objects, such as the time evolution, the n-point correlation functions, and the scattering amplitudes. The time-ordered exponential generated by a bounded operator-valued function has already been well researched, but the one generated by an unbounded operator-valued function has not fully investigated so far; the mathematical theory which is applicable to the analysis of concrete models of quantum field theory has been inadequately studied. The first main purpose of this work is to provide a general mathematical theory on time-ordered exponential. The second main purpose is to construct concrete quantum field models and to analyze them rigorously. In this paper, we study the following: (I) construction of dynamics for non- symmetric Hamiltonians, (II) Gupta-Bleuler formalism, (III) Gell-Mann{Low formula, (IV) criteria for essential self-adjointness.
    [Show full text]
  • Geometric Flows and (Some Of) Their Physical Applications
    hep–th/0511057 CERN-PH-TH/2005-211 October 2005 Geometric flows and (some of) their physical applications∗ Ioannis Bakas† Theory Division, Department of Physics, CERN CH-1211 Geneva 23, Switzerland [email protected] Abstract The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on K¨ahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of arXiv:hep-th/0511057 v1 4 Nov 2005 infinite dimensional algebras with infinite growth. It is also explained in this context 2 how Kac’s K2 simple Lie algebra can be used to construct metrics on S with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate; applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed. ∗Based on an invited lecture at the Alexander von Humboldt foundation international conference on Advances in Physics and Astrophysics of the 21st Century, held from 6 to 11 September 2005 in Varna, Bulgaria; to appear in a Supplement to the Bulgarian Journal of Physics †Present (permanent) address: Department of Physics, University of Patras, 26500 Patras, Greece; e-mail: [email protected] The geometric evolution equations are parabolic systems that describe the deformation of metrics on Riemannian manifolds driven by their curvature in various forms.
    [Show full text]
  • Gauge Theory and Gravity in the Loop Formulation
    6 Cb 3 Li I } ` VO Center for Gravitational Physics and Geometry The Pennsylvania State University University Pant, PA 16802-6300 ,. ,_ 3 (F V9 ;m8eio uyemusrpiroo etmrm CGPG-94/ 1-2 Gauge Theory and Gravity in the Loop Formulation Renate Lcll cam Lieeemi-;s. cassava Center fg; Ggavitatignal and Geometry, Pennsylvania State University, F‘@B@El 125 University Psi-k, PA 16802-62:00, USA 1 Introduction This article introduces the basic notions and mathematical structures of the so-called loop approach to gauge theory and gravity. The two theories will be treated in parallel as far as this is possible. Emphasis will be put on those aspects of the loop formulation that make it conceptually different from other, local formulations. This contribution is meant to be complementary to other articles in this volume, but some overlap has been unavoidable to ensure a coherent presentation. Many more mathematical details and references for those who want to learn more about loops are contained in a related review (Loll 1993d). Another useful reference focussing on the gravitational application is the review article by Pullin (1993). The- following Section 2 summarizes the classical and quantum description of both gauge theory and gravity as theories on connection space, to set the stage for Sections 3-5 which deal with specific aspects of the loop formulation. In Section 3, I define paths, loops and holonomies, and briefly review past applications in physics. Section 4 is devoted to the iden tities satisfied by the holonomies and their traces, the latter also known as the Mandelstam constraints.
    [Show full text]
  • Reduced Density Matrix Cumulants: the Combinatorics of Size-Consistency and Generalized Normal Ordering
    Reduced Density Matrix Cumulants: The Combinatorics of Size-Consistency and Generalized Normal Ordering Jonathon P. Misiewicz, Justin M. Turney, and Henry F. Schaefer III∗ Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia, 30602 E-mail: [email protected] Abstract Reduced density matrix cumulants play key roles in the theory of both reduced den- sity matrices and multiconfigurational normal ordering, but the underlying formalism has remained mysterious. We present a new, simpler generating function for reduced density matrix cumulants that is formally identical to equating the coupled cluster and configuration interaction ans¨atze.This is shown to be a general mechanism to convert between a multiplicatively separable quantity and an additively separable quantity, as defined by a set of axioms. It is shown that both the cumulants of probability theory and reduced density matrices are entirely combinatorial constructions, where the differences can be associated to changes in the notion of \multiplicative separabil- ity" for expectation values of random variables compared to reduced density matrices. We compare our generating function to that of previous works and criticize previous claims of probabilistic significance of the reduced density matrix cumulants. Finally, we present the simplest proof to date of the Generalized Normal Ordering formalism to explore the role of reduced density matrix cumulants therein. 1 1 Introduction Reduced density matrix cumulants are fundamental in both reduced density matrix (RDM) theories and multireference theories that use the generalized normal ordering formalism (GNO) of Kutzelnigg and Mukherjee.1{5 To RDM theories, RDM cumulants are the size- consistent parts of the RDMs. This is one of the primary reasons why cumulants are either parameterized or varied directly in many RDM-based theories.6{11 In GNO, second quan- tized operators are decomposed into linear combinations of operators \normal ordered" with respect to an arbitrary reference, Ψ, via the Generalized Wick's Theorem.
    [Show full text]
  • Lecture Notes on General Relativity Sean M
    Lecture Notes on General Relativity Sean M. Carroll Institute for Theoretical Physics University of California Santa Barbara, CA 93106 [email protected] December 1997 Abstract These notes represent approximately one semester’s worth of lectures on intro- ductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein’s equations, and three applications: grav- itational radiation, black holes, and cosmology. Individual chapters, and potentially updated versions, can be found at http://itp.ucsb.edu/~carroll/notes/. arXiv:gr-qc/9712019v1 3 Dec 1997 NSF-ITP/97-147 gr-qc/9712019 i Table of Contents 0. Introduction table of contents — preface — bibliography 1. Special Relativity and Flat Spacetime the spacetime interval — the metric — Lorentz transformations — spacetime diagrams — vectors — the tangent space — dual vectors — tensors — tensor products — the Levi-Civita tensor — index manipulation — electromagnetism — differential forms — Hodge duality — worldlines — proper time — energy-momentum vector — energy- momentum tensor — perfect fluids — energy-momentum conservation 2. Manifolds examples — non-examples — maps — continuity — the chain rule — open sets — charts and atlases — manifolds — examples of charts — differentiation — vectors as derivatives — coordinate bases — the tensor transformation law — partial derivatives are not tensors — the metric again — canonical form of the metric — Riemann normal coordinates — tensor densities — volume forms and integration 3. Curvature
    [Show full text]
  • Lattice Gauge Theory in Terms of Independent Wilson Loops R
    I ~LIIIIll l~_l LIml 5"dh~!(111 g| PROCEEDINGS Nuclear Physics B (Proc. Suppl.) 30 (1993) 224-227 SUPPLEMENTS North-Holland Lattice gauge theory in terms of independent Wilson loops R. Lolla * aPhysics Department, Syracuse University Syracuse, NY 13244-1130, U.S.A. We discuss the construction of a complete set of independent Wilson loops Tr P exp ~w A that allows one to formulate the physics of pure lattice gauge theory directly on the subspace of physical configurations, and report on progress in recasting the theory in terms of these variables. 1. THE NEW LOOP APPROACH set of gauge orbits in A (G is the group of local gauge transformations), the right-hand side de- The mathematical ingredients necessary in the notes the set of complex-valued functions on loop description of our general approach consist of a d- space, subject to a set of so-called Mandelstam dimensional manifold I3d, d = 2, 3, 4, a Yang-Mills constraints. These can be seen as deriving from gauge group G C Gl(n, C), and a representation identities satisfied by the traces of n × n-matrices. R of G on a linear space Vn. A path is a continu- They are algebraic equations non-linear in T, and ous mapping 3': [0, 1] ---* I] a. If 3'(0) = 3'(1), 3' is their form depends on G and R, in particular the called a loop. For each loop 3', we define on the dimensionality n of VR. configuration space .4 of pure Yang-Mills theory Our aim is to recast the tbeory, given in terms the path-ordered exponential of the local and gauge-covariant gauge poten- tials A(x), in terms of the non-local and gauge- U,~(7) := Pexpig/A~(7(t));ru(t)dt.
    [Show full text]
  • Decomposition of Time-Ordered Products and Path-Ordered
    Decomposition of Time-Ordered Products and Path-Ordered Exponentials C.S. Lam∗ Department of Physics, McGill University, 3600 University St., Montreal, QC, Canada H3A 2T8 Abstract We present a decomposition formula for Un, an integral of time-ordered prod- ucts of operators, in terms of sums of products of the more primitive quantities Cm, which are the integrals of time-ordered commutators of the same opera- tors. The resulting factorization enables a summation over n to be carried out to yield an explicit expression for the time-ordered exponential, an expression which turns out to be an exponential function of Cm. The Campbell-Baker- Hausdorff formula and the nonabelian eikonal formula obtained previously are both special cases of this result. arXiv:hep-th/9804181v1 28 Apr 1998 Typeset using REVTEX 1 I. INTRODUCTION ′ T The path-ordered exponential U(T, T ) = P exp( T ′ H(t)dt) is the solution of the first order differential equation dU(T, T ′)/dT = H(T )UR (T, T ′) with the initial condition U(T ′, T ′) = 1. The function H(T ) can be a finite-dimensional matrix or an infinite- dimensional operator. In the latter case all concerns of domain and convergence will be ignored. The parameter t labelling the path shall be referred to as ‘time’, so path-ordering and time-ordering are synonymous in the present context. The path-ordered exponential ′ ∞ is usually computed from its power series expansion, U(T, T ) = n=0 Un, in terms of the T n P time-ordered products Un = P( T ′ H(t)dt) /n!.
    [Show full text]
  • Fiber Bundles, Yang and the Geometry of Spacetime
    Fiber bundles, Yang and the geometry of spacetime. A bachelor research in theoretical physics Federico Pasinato Univeristy of Groningen E-mail: [email protected] First supervisor: P rof: Dr: Elisabetta P allante Second supervisor: P rof: Dr: Holger W aalkens Last updated on July 24, 2018 Acknowledgments To my family, nothing would have been possible without their sacrifices and love. A special thanks to C.N.Yang public lectures, Kenneth Young’s lectures on thematic melodies of 20th century and a particular thanks to Simon Rea’s lecture notes of Frederic Schuller’s course on the “Geometric anatomy of theoretical physics”, taught in the academic year 2013/14 at the Friedrich-Alexander-Universität Erlangen-Nürnberg. The entire course is hosted on YouTube at the following address: www.youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic We will be mainly interested in the fiber bundle formalism introduced. Federico Pasinato Contents Acknowledgements1 Introduction1 1 The first field theory2 1.1 James Clerk Maxwell2 1.2 Herman Weyl4 1.3 Yang and Mills, the gauge symmetry5 1.4 The emergence of a central mathematical construct7 2 Abelian case 11 2.1 Magnetostatics 11 2.2 Adding Quantum Mechanics 12 2.3 Differential geometry for physicists 14 2.4 Back to EM 18 3 Non-Abelian case 20 3.1 Differential geometry for physicists - continued 21 3.2 General Relativity 23 3.3 Concluding remarks, a path to unification 24 4 Fiber bundle 25 4.1 Topological manifolds and bundles 25 4.1.1 Bundles 25 4.1.2 Product bundles 26 4.1.3 Fiber Bundles 26 4.1.4 Application
    [Show full text]
  • 4. Lattice Gauge Theory
    4. Lattice Gauge Theory Quantum field theory is hard. Part of the reason for our difficulties can be traced to the fact that quantum field theory has an infinite number of degrees of freedom. You may wonder whether things get simpler if we can replace quantum field theory with a di↵erent theory which has a finite, albeit very large, number of degrees of freedom. We will achieve this by discretizing space (and, as we will see, also time). The result goes by the name of lattice gauge theory. There is one, very practical reason for studying lattice gauge theory: with a discrete version of the theory at hand, we can put it on a computer and study it numerically. This has been a very successful programme, especially in studying the mass spectrum of Yang-Mills and QCD, but it is not our main concern here. Instead, we will use lattice gauge theory to build better intuition for some of the phenomena that we have met in these lectures, including confinement and some subtle issues regarding anomalies. There are di↵erent ways that we could envisage trying to write down a discrete theory: Discretize space, but not time. We could, for example, replace space with a cubic, • three dimensional lattice. This is known as Hamiltonian lattice gauge theory. This has the advantage that it preserves the structure of quantum mechanics, so we can discuss states in a Hilbert space and the way they evolve in (continuous) time. The resulting quantum lattice models are conceptually similar to the kinds of things we meet in condensed matter physics.
    [Show full text]