Formal (Non)-Commutative Symplectic Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Tate–Oort Group Scheme Top
The Tate{Oort group scheme TOp Miles Reid In memory of Igor Rostislavovich Shafarevich, from whom we have all learned so much Abstract Over an algebraically closed field of characteristic p, there are 3 group schemes of order p, namely the ordinary cyclic group Z=p, the multiplicative group µp ⊂ Gm and the additive group αp ⊂ Ga. The Tate{Oort group scheme TOp of [TO] puts these into one happy fam- ily, together with the cyclic group of order p in characteristic zero. This paper studies a simplified form of TOp, focusing on its repre- sentation theory and basic applications in geometry. A final section describes more substantial applications to varieties having p-torsion in Picτ , notably the 5-torsion Godeaux surfaces and Calabi{Yau 3-folds obtained from TO5-invariant quintics. Contents 1 Introduction 2 1.1 Background . 3 1.2 Philosophical principle . 4 2 Hybrid additive-multiplicative group 5 2.1 The algebraic group G ...................... 5 2.2 The given representation (B⊕2)_ of G .............. 6 d ⊕2 _ 2.3 Symmetric power Ud = Sym ((B ) ).............. 6 1 3 Construction of TOp 9 3.1 Group TOp in characteristic p .................. 9 3.2 Group TOp in mixed characteristic . 10 3.3 Representation theory of TOp . 12 _ 4 The Cartier dual (TOp) 12 4.1 Cartier duality . 12 4.2 Notation . 14 4.3 The algebra structure β : A_ ⊗ A_ ! A_ . 14 4.4 The Hopf algebra structure δ : A_ ! A_ ⊗ A_ . 16 5 Geometric applications 19 5.1 Background . 20 2 5.2 Plane cubics C3 ⊂ P with free TO3 action . -
Hamiltonian Systems on Symplectic Manifolds
This is page 147 Printer: Opaque this 5 Hamiltonian Systems on Symplectic Manifolds Now we are ready to geometrize Hamiltonian mechanics to the context of manifolds. First we make phase spaces nonlinear, and then we study Hamiltonian systems in this context. 5.1 Symplectic Manifolds Definition 5.1.1. A symplectic manifold is a pair (P, Ω) where P is a manifold and Ω is a closed (weakly) nondegenerate two-form on P .IfΩ is strongly nondegenerate, we speak of a strong symplectic manifold. As in the linear case, strong nondegeneracy of the two-form Ω means that at each z ∈ P, the bilinear form Ωz : TzP × TzP → R is nondegenerate, that is, Ωz defines an isomorphism → ∗ Ωz : TzP Tz P. Fora(weak) symplectic form, the induced map Ω : X(P ) → X∗(P )be- tween vector fields and one-forms is one-to-one, but in general is not sur- jective. We will see later that Ω is required to be closed, that is, dΩ=0, where d is the exterior derivative, so that the induced Poisson bracket sat- isfies the Jacobi identity and so that the flows of Hamiltonian vector fields will consist of canonical transformations. In coordinates zI on P in the I J finite-dimensional case, if Ω = ΩIJ dz ∧ dz (sum over all I<J), then 148 5. Hamiltonian Systems on Symplectic Manifolds dΩ=0becomes the condition ∂Ω ∂Ω ∂Ω IJ + KI + JK =0. (5.1.1) ∂zK ∂zJ ∂zI Examples (a) Symplectic Vector Spaces. If (Z, Ω) is a symplectic vector space, then it is also a symplectic manifold. -
Time-Dependent Hamiltonian Mechanics on a Locally Conformal
Time-dependent Hamiltonian mechanics on a locally conformal symplectic manifold Orlando Ragnisco†, Cristina Sardón∗, Marcin Zając∗∗ Department of Mathematics and Physics†, Universita degli studi Roma Tre, Largo S. Leonardo Murialdo, 1, 00146 , Rome, Italy. ragnisco@fis.uniroma3.it Department of Applied Mathematics∗, Universidad Polit´ecnica de Madrid. C/ Jos´eGuti´errez Abascal, 2, 28006, Madrid. Spain. [email protected] Department of Mathematical Methods in Physics∗∗, Faculty of Physics. University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. [email protected] Abstract In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t- dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations and formulate a time-dependent geometric Hamilton-Jacobi theory on lcs manifolds. In contrast to previous papers concerning locally conformal symplectic manifolds, here the introduction of the time dependency brings out interesting geometric properties, as it is the introduction of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out. arXiv:2104.02636v1 [math-ph] 6 Apr 2021 Contents 1 Introduction 2 2 Fundamentals on time-dependent Hamiltonian systems 5 2.1 Time-dependentsystems. ....... 5 2.2 Canonicaltransformations . ......... 6 2.3 Generating functions of canonical transformations . ................ 8 1 3 Geometry of locally conformal symplectic manifolds 8 3.1 Basics on locally conformal symplectic manifolds . ............... 8 3.2 Locally conformal symplectic structures on cotangent bundles............ -
Conformal Hamiltonian Systems
Journal of Geometry and Physics 39 (2001) 276–300 Conformal Hamiltonian systems Robert McLachlan∗, Matthew Perlmutter IFS, Massey University, Palmerston North, New Zealand 5301 Received 4 August 2000; received in revised form 23 January 2001 Abstract Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric con- formal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotan- gent bundles, Lie–Poisson manifolds, and their natural quotients. © 2001 Elsevier Science B.V. All rights reserved. MSC: 53C57; 58705 Sub. Class.: Dynamical systems Keywords: Hamiltonian systems; Conformal Poisson structure 1. Introduction The fields of symplectic geometry and geometric mechanics are closely linked, indeed almost synonymous [10,14]. One of their most important features is that the symplectic diffeomorphisms on a manifold form a group. This property can be taken as the definition of “geometry;” it is natural to try and generalize it. In 1913 Cartan [5,24] found that, subject to certain restrictions, there are just six classes of groups of diffeomorphisms on any manifold, namely (i) Diff itself; (ii) Diffω, the diffeomorphisms preserving a symplectic 2-form ω; (iii) Diffµ, the diffeomorphisms preserving a volume form µ; (iv) Diffα, the diffeomorphisms c preserving a contact form α up to a function; and the conformal groups, (v) Diffω and (vi) c Diffµ, the diffeomorphisms preserving the form ω or µ up to a constant. -
GROUPOID SCHEMES 022L Contents 1. Introduction 1 2
GROUPOID SCHEMES 022L Contents 1. Introduction 1 2. Notation 1 3. Equivalence relations 2 4. Group schemes 4 5. Examples of group schemes 5 6. Properties of group schemes 7 7. Properties of group schemes over a field 8 8. Properties of algebraic group schemes 14 9. Abelian varieties 18 10. Actions of group schemes 21 11. Principal homogeneous spaces 22 12. Equivariant quasi-coherent sheaves 23 13. Groupoids 25 14. Quasi-coherent sheaves on groupoids 27 15. Colimits of quasi-coherent modules 29 16. Groupoids and group schemes 34 17. The stabilizer group scheme 34 18. Restricting groupoids 35 19. Invariant subschemes 36 20. Quotient sheaves 38 21. Descent in terms of groupoids 41 22. Separation conditions 42 23. Finite flat groupoids, affine case 43 24. Finite flat groupoids 50 25. Descending quasi-projective schemes 51 26. Other chapters 52 References 54 1. Introduction 022M This chapter is devoted to generalities concerning groupoid schemes. See for exam- ple the beautiful paper [KM97] by Keel and Mori. 2. Notation 022N Let S be a scheme. If U, T are schemes over S we denote U(T ) for the set of T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021. 1 GROUPOID SCHEMES 2 the letter T to denote a “test scheme” over S, as in the discussion that follows. Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y over S. -
COHOMOLOGY of LIE GROUPS MADE DISCRETE Abstract
Publicacions Matemátiques, Vol 34 (1990), 151-174 . COHOMOLOGY OF LIE GROUPS MADE DISCRETE PERE PASCUAL GAINZA Abstract We give a survey of the work of Milnor, Friedlander, Mislin, Suslin, and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields. Let G be a Lie group and let G6 denote the same group with the discrete topology. The natural homomorphism G6 -+ G induces a continuous map between classifying spaces rt : BG6 -----> BG . E.Friedlander and J. Milnor have conjectured that rl induces isomorphisms of homology and cohomology with finite coefficients. The homology of BG6 is the Eilenberg-McLane homology of the group G6 , hard to compute, and one of the interests of the conjecture is that it permits the computation of these groups with finite coefficients through the computation (much better understood) of the homology and cohomology of BG. The Eilenberg-McLane homology groups of a topological group G are of interest in a variety of contexts such as the theory of foliations [3], [11], the scissors congruence [6] and algebraic K-theory [26] . For example, the Haefliger classifying space of the theory of foliations is closely related to the group of homeomorphisms of a topological manifold, for which one can prove analogous results of the Friedlander-Milnor conjecture with entire coefFicients, cf. [20], [32] . These notes are an exposition of the context of the conjecture, some known results mainly due to Milnor, Friedlander, Mislin and Suslin, and its application to the study of the groups K;(C), i > 0. -
Coalgebras from Formulas
Coalgebras from Formulas Serban Raianu California State University Dominguez Hills Department of Mathematics 1000 E Victoria St Carson, CA 90747 e-mail:[email protected] Abstract Nichols and Sweedler showed in [5] that generic formulas for sums may be used for producing examples of coalgebras. We adopt a slightly different point of view, and show that the reason why all these constructions work is the presence of certain representative functions on some (semi)group. In particular, the indeterminate in a polynomial ring is a primitive element because the identity function is representative. Introduction The title of this note is borrowed from the title of the second section of [5]. There it is explained how each generic addition formula naturally gives a formula for the action of the comultiplication in a coalgebra. Among the examples chosen in [5], this situation is probably best illus- trated by the following two: Let C be a k-space with basis {s, c}. We define ∆ : C −→ C ⊗ C and ε : C −→ k by ∆(s) = s ⊗ c + c ⊗ s ∆(c) = c ⊗ c − s ⊗ s ε(s) = 0 ε(c) = 1. 1 Then (C, ∆, ε) is a coalgebra called the trigonometric coalgebra. Now let H be a k-vector space with basis {cm | m ∈ N}. Then H is a coalgebra with comultiplication ∆ and counit ε defined by X ∆(cm) = ci ⊗ cm−i, ε(cm) = δ0,m. i=0,m This coalgebra is called the divided power coalgebra. Identifying the “formulas” in the above examples is not hard: the for- mulas for sin and cos applied to a sum in the first example, and the binomial formula in the second one. -
SYMPLECTIC GEOMETRY Lecture Notes, University of Toronto
SYMPLECTIC GEOMETRY Eckhard Meinrenken Lecture Notes, University of Toronto These are lecture notes for two courses, taught at the University of Toronto in Spring 1998 and in Fall 2000. Our main sources have been the books “Symplectic Techniques” by Guillemin-Sternberg and “Introduction to Symplectic Topology” by McDuff-Salamon, and the paper “Stratified symplectic spaces and reduction”, Ann. of Math. 134 (1991) by Sjamaar-Lerman. Contents Chapter 1. Linear symplectic algebra 5 1. Symplectic vector spaces 5 2. Subspaces of a symplectic vector space 6 3. Symplectic bases 7 4. Compatible complex structures 7 5. The group Sp(E) of linear symplectomorphisms 9 6. Polar decomposition of symplectomorphisms 11 7. Maslov indices and the Lagrangian Grassmannian 12 8. The index of a Lagrangian triple 14 9. Linear Reduction 18 Chapter 2. Review of Differential Geometry 21 1. Vector fields 21 2. Differential forms 23 Chapter 3. Foundations of symplectic geometry 27 1. Definition of symplectic manifolds 27 2. Examples 27 3. Basic properties of symplectic manifolds 34 Chapter 4. Normal Form Theorems 43 1. Moser’s trick 43 2. Homotopy operators 44 3. Darboux-Weinstein theorems 45 Chapter 5. Lagrangian fibrations and action-angle variables 49 1. Lagrangian fibrations 49 2. Action-angle coordinates 53 3. Integrable systems 55 4. The spherical pendulum 56 Chapter 6. Symplectic group actions and moment maps 59 1. Background on Lie groups 59 2. Generating vector fields for group actions 60 3. Hamiltonian group actions 61 4. Examples of Hamiltonian G-spaces 63 3 4 CONTENTS 5. Symplectic Reduction 72 6. Normal forms and the Duistermaat-Heckman theorem 78 7. -
The Hamiltonian Formulation of Geodesics
U.U.D.M. Project Report 2021:36 The Hamiltonian formulation of geodesics Victor Hildebrandsson Examensarbete i matematik, 15 hp Handledare: Georgios Dimitroglou Rizell Examinator: Martin Herschend Juli 2021 Department of Mathematics Uppsala University Abstract We explore the Hamiltonian formulation of the geodesic equation. We start with the definition of a differentiable manifold. Then we continue with studying tensors and differential forms. We define a Riemannian manifold (M; g) and geodesics, the shortest path between two points, on such manifolds. Lastly, we define the symplectic manifold (T ∗M; d(pdq)), and study the connection between geodesics and the flow of Hamilton's equations. 2 Contents 1 Introduction 4 2 Background 5 2.1 Calculus of variations . .5 2.2 Differentiable manifolds . .8 2.3 Tensors and vector bundles . 10 3 Differential forms 13 3.1 Exterior and differential forms . 13 3.2 Integral and exterior derivative of differential forms . 14 4 Riemannian manifolds 17 5 Symplectic manifolds 20 References 25 3 1 Introduction In this thesis, we will study Riemannian manifolds and symplectic manifolds. More specifically, we will study geodesics, and their connection to the Hamilto- nian flow on the symplectic cotangent bundle. A manifold is a topological space which locally looks like Euclidean space. The study of Riemannian manifolds is called Riemannian geometry, the study of symplectic manifolds is called symplectic geometry. Riemannian geometry was first studied by Bernhard Riemann in his habil- itation address "Uber¨ die Hypothesen, welche der Geometrie zugrunde liegen" ("On the Hypotheses on which Geometry is Based"). In particular, it was the first time a mathematician discussed the concept of a differentiable manifold [1]. -
Some Structure Theorems for Algebraic Groups
Proceedings of Symposia in Pure Mathematics Some structure theorems for algebraic groups Michel Brion Abstract. These are extended notes of a course given at Tulane University for the 2015 Clifford Lectures. Their aim is to present structure results for group schemes of finite type over a field, with applications to Picard varieties and automorphism groups. Contents 1. Introduction 2 2. Basic notions and results 4 2.1. Group schemes 4 2.2. Actions of group schemes 7 2.3. Linear representations 10 2.4. The neutral component 13 2.5. Reduced subschemes 15 2.6. Torsors 16 2.7. Homogeneous spaces and quotients 19 2.8. Exact sequences, isomorphism theorems 21 2.9. The relative Frobenius morphism 24 3. Proof of Theorem 1 27 3.1. Affine algebraic groups 27 3.2. The affinization theorem 29 3.3. Anti-affine algebraic groups 31 4. Proof of Theorem 2 33 4.1. The Albanese morphism 33 4.2. Abelian torsors 36 4.3. Completion of the proof of Theorem 2 38 5. Some further developments 41 5.1. The Rosenlicht decomposition 41 5.2. Equivariant compactification of homogeneous spaces 43 5.3. Commutative algebraic groups 45 5.4. Semi-abelian varieties 48 5.5. Structure of anti-affine groups 52 1991 Mathematics Subject Classification. Primary 14L15, 14L30, 14M17; Secondary 14K05, 14K30, 14M27, 20G15. c 0000 (copyright holder) 1 2 MICHEL BRION 5.6. Commutative algebraic groups (continued) 54 6. The Picard scheme 58 6.1. Definitions and basic properties 58 6.2. Structure of Picard varieties 59 7. The automorphism group scheme 62 7.1. -
The Picard Scheme of an Abelian Variety
Chapter VI. The Picard scheme of an abelian variety. 1. Relative Picard functors. § To place the notion of a dual abelian variety in its context, we start with a short discussion of relative Picard functors. Our goal is to sketch some general facts, without much discussion of proofs. Given a scheme X we write Pic(X)=H1(X, O∗ )= isomorphism classes of line bundles on X , X { } which has a natural group structure. (If τ is either the Zariski, or the ´etale, or the fppf topology 1 on Sch/X then we can also write Pic(X)=Hτ (X, Gm), viewing the group scheme Gm = Gm,X as a τ-sheaf on Sch/X ;seeExercise??.) If C is a complete non-singular curve over an algebraically closed field k then its Jacobian Jac(C) is an abelian variety parametrizing the degree zero divisor classes on C or, what is the same, the degree zero line bundles on C. (We refer to Chapter 14 for further discussion of Jacobians.) Thus, for every k K the degree map gives a homomorphism Pic(C ) Z, and ⊂ K → we have an exact sequence 0 Jac(C)(K) Pic(C ) Z 0 . −→ −→ K −→ −→ In view of the importance of the Jacobian in the theory of curves one may ask if, more generally, the line bundles on a variety X are parametrized by a scheme which is an extension of a discrete part by a connected group variety. If we want to study this in the general setting of a scheme f: X S over some basis S,we → are led to consider the contravariant functor P :(Sch )0 Ab given by X/S /S → P : T Pic(X )=H1(X T,G ) . -
Odd and Even Poisson Brackets 1
Odd and even Poisson brackets 1 Y. Kosmann-Schwarzbach Centre de Math´ematiques (Unit´eMixte de Recherches du C.N.R.S. 7640) Ecole Polytechnique F-91128 Palaiseau, France Abstract On a Poisson manifold, the divergence of a hamiltonian vector field is a derivation of the algebra of functions, called the modular vector field. In the case of an odd Poisson bracket on a supermanifold, the divergence of a hamilto- nian vector field is a generator of the odd bracket, and it is nontrivial, whether the Poisson structure is symplectic or not. The quantum master equation is a Maurer-Cartan equation written in terms of an odd Poisson bracket (an- tibracket) and of a generator of square 0 of this bracket. The derived bracket of the antibracket with respect to the quantum BRST differential defines the even graded Lie algebra structure of the space of quantum gauge parameters. 1 Introduction In the “geometry of Batalin-Vilkovisky quantization” [13] [14], a supermanifold (M, A) of dimension n|n is equipped with an odd Poisson structure. More precisely, A is a sheaf of Z2-graded Gerstenhaber algebras. A Z2-graded Gerstenhaber algebra A is a Z2-graded commutative, associative algebra, with a bracket, [ , ], satisfying [f,g]= −(−1)(|f|−1)(|g|−1)[g, f] , [f, [g, h]] = [[f,g], h]+(−1)(|f|−1)(|g|−1)[g, [f, h]] , [f,gh] = [f,g]h +(−1)(|f|−1)|g|g[f, h] , 1Quantum Theory and Symmetries, H.-D. Doebner et al.. eds., World Scientific, 2000, 565-571. 1 for all f,g,h ∈ A, where |f| denotes the degree of f.