An Introduction to Arithmetic Groups (Via Group Schemes)

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Arithmetic Groups (Via Group Schemes) An introduction to arithmetic groups (via group schemes) Ste↵en Kionke 02.07.2020 Content Properties of arithmetic groups Arithmetic groups as lattices in Lie groups Last week Let G be a linear algebraic group over Q. Definition: A subgroup Γ G(Q) is arithmetic if it is commensurable to ✓ G0(Z) for some integral form G0 of G. integral form: a group scheme G0 over Z with an isomorphism EQ/Z(G0) ⇠= G. Recall: Here group schemes are affine and of finite type. S-arithmetic groups S: a finite set of prime numbers. 1 ZS := Z p S p | 2 Definition: ⇥ ⇤ A subgroup Γ G(Q) is S-arithmetic if it is commensurable to ✓ G0(ZS) for some integral form G0 of G. - " over bretter : afvm Ks „ t : replace 2 by Ep [ ] Sir= Q by Fpk ) Properties of arithmetic groups Theorem 2: Let Γ G(Q) be an arithmetic group. ✓ * 1 Γ is residually finite. 2 Γ is virtually torsion-free. To Torsion -free % !! with 3 Γ has only finitely many conjugacy classes of finite subgroups. ③ ⇒ finitely many iso classes of finite subgroups Er ⇒ E- finite Es !> leg F isomorph:c to asuboraarp 4 Γ is finitely presented. µ ↳ Fa P is aftype Proof: Γ virtually torsion-free Assume Γ=G0(Z). Claim: G0(Z,b) is torsion-free for b 3. ≥ G0(Z,mby)=ker G0(Z) G0(Z/bZ) ! Suppose g G0(Z,b) has finite order > 1. 2 Vlog ordlg) =p Prime Etbh G : → 2 g- h:&] ? 2-linear Assuwe his out Proof: Γ virtually torsion-free g = " + bh with h: G0 Z onto. O ! ord(g)=p prime. Ik) G. → Go ~> B : OG → & . X h xk ' ' ) Ä = E + E. = = Kribbeln .gl go pbht ⇒ - b 33 : ⇒ tnodb O = b) p p - pbhmodbi ' ' : ⇒ E-omodp o = Eh nodp § M¥3 candida ! Pll! ) fer all #kcp Group schemes and topological groups R : commutative unital ring G : affine group scheme over R . ( . # A : an R-algebra which is also a topological ring. RE, Qp ) Observation: G(A) is a topological group with respect the topology induced by coordinates : G(A) ⇠= V (I ) An c,A ! A c ✓ F. product topdogy : chosen coadiceates . Falt Does not de pend on Group schemes and topological groups A : an R-algebra which is also a topological ring. is onto : → OG Observation: µ Ü OH If ': G H is a closed embedding of affine group schemes over ! R,then ' : G(A) H(A) A ! is a continuous closed embedding of topological groups. thilo G coordinator for H and push ( Hint : pick Ic E Ii GCAIE VIE' ) E VALE ) EHCA ) ) Group schemes and topological groups G: affine group scheme over Z. Consequences: G(R) is a real Lie group (with finitely many connected components). - Closed 9 : E ( G ) Gta enbedding GCR) Gluck) hie ! ¥, group " : real . Varietees have Ehelichen ! Fast alg finite, many " capaats G(Z) G(R) is a discrete subgroup. ✓ " GER) = ) ER K¥2 diente UI UI ↳ " GCZI E Vz (Ic) E Z Theorem of Borel and Harish-Chandra G linear algebraic group over Q Γ G(Q) arithmetic subgroup " ✓ lattice ← " 1 Γ G(R) has finite covolume ✓ () swurjeetine there is no surjective homomorphism G Gm. ( ! GEH ) 2 Γ G(R) is cocompact ✓ () there is no closed embedding Gm G. ! ← G Es anisotropie Remark: Every surjective G Gm splits. ! Examples " RACES Z = Ga(Z) R = Ga(R) is cocompact ✓ ' hom : GET] → Exercise : Thee is no sarjectiue GET ] - of d - algebras GLn(Z) GLn(R) is not a lattice ✓ is det : Glen → Gm SLn(Z) SLn(R) is a lattice but is not cocompact ✓ → S4 a ↳ än swjeetim.no/-cocapact:-Gm[ . " ) laltice : : Sh - Gm - Cf % : SLNHR) → IRX { simple Diagonalization Lemma Let ': Gm GLn be a homomorphism of linear algebraic groups ! over K.Thereisamatrixg GL (K) s.t. 2 n λe1 λe2 1 g'(λ)g− = 0 . 1 .. B C B λen C B C @ A for certain e1,...,en Z and for all λ K⇥. 2 2 Note: If ' is a closed embedding, then e =0for some i. i 6 More examples (1) The Heisenberg group is cocompact: 1 xz H3(Z)= 01y x, y, z Z H3(R) 0 1 | 2 ✓ n 001 o @ A not # 1 are Reasoni.me/ewats , izabk diagonal . More examples (2) F = Q(p2) quadratic number field σ1 : F R with p2 p2 ! 7! σ2 : F R with p2 p2 ! 7! − Observation: (σ1,σ2): F R R E! ⇥ induces an isomorphism R F R R. ⌦Q ! ⇥ More examples (2) Define: T G(A)= g GLn+1(A Z[p2]) g Jg = J { 2 ⌦Z | } p2 − 1 where J = 0 . 1. .. B C B 1C B C @ A Observation: G(R) = O(n, 1) O(n + 1) ⇠ ⇥ {9 ⇐ Glnen (REF ) 153g = )} = { cge.ge/EGLs-ulRIxGLn-nCRI/giJgr=J,gzGB)gz--6dJ) } More examples (2) Claim: G(Z) G(R) ⇠= O(n, 1) O(n + 1) is cocompact. ✓ ⇥ " ← trick a compact factor 9 : Gm --G : - Ä Gm E. (G) Ghana, 9% ,. „ ? " rohes E . ¥ Gült ) izabk with ein diagonal m = 2kt I ) More examples (2) Claim: G(Z) G(R) = O(n, 1) O(n + 1) is cocompact. ✓ ⇠ ⇥ t.iq) - Complex 04+1 ) egnuduaföabs 6<(44-1)--1 ratet . ⇒ Geld Hl) =L Cf is not a closed embedding . An observation Lemma: Let G, H be real Lie groups with finitely many connected components. Let ': G H be a surjective homomorphism with ! compact kernel K =ker('). Assume Γ G is a discrete subgroup, then the following hold: ✓ 1 '(Γ) H is discrete. ✓ 2 Γ torsion-free = Γ = '(Γ). ) ⇠ 3 G/Γ compact H/'(Γ) compact. () 4 Γ G is a lattice '(Γ) H is a lattice. ✓ () ✓ Proof - " Fact: ' is open and proper. ( if Cc ) compact it Cncmpact ) (1) Let h H, U H an open relatively compact neighbourhood. 2 ✓ " " ( Ü ) Z la is compact 4- Q ) Öcalan finite 919in) ni ) = Un 41N rs finite (2) Pn K dis cute ad capaot = , finite " E- ) < es ihn :P 9in Proof Fact: ' is open and proper. (3) “ ”: ' induces is a surjective continuous map ) ': G/Γ H/'(Γ). ! GP h 91g) 9C ) “ ”: If H/'(Γ) is compact, there is a compact set C H with ( ✓ C'(Γ) = H. 1 Then '− (C)Γ= G. and UTC ) maps out % ⇒ compact . Back to the example T Γ=G(Z)= g GLn+1(Z[p2]) g Jg = J 2 | is a discrete cocompact subgroup of G(R) = O(n, 1) O(n + 1). ⇠ ⇥ Project onto first factor: Γ is a discrete cocompact subgroup of O(n, 1). Arithmetically defined groups Definition: Let H be a real Lie group with finitely many connected " " components. ( aithmetie ) → mostly Alattice∆ H is arithmetically defined if ✓ there is a linear algebraic group G over Q, an arithmetic subgroup Γ G(Q) G(R)0 and ✓ \ a surjective homomorphism ': G(R)0 H0 ! with compact kernel such that ∆ and '(Γ) commensurable. Margulis’ arithmeticity Theorem [Margulis]: Let H be a connected simple Lie group such that H = G(R)0 for some linear algebraic R-group G of R-rank 2. ≥ ↳ Closed Every lattice ∆ H is arithmetically defined. ✓ [email protected] A- AutosT Simple groups of R-rank 2 ≥ vk ( Sha ) = n - I SLn(R) for n 3. ≥ rk ( Spzn ) = h Sp (R) for n 2. 2n ≥ ) = / SO(p, q) for p, q 2. vk Cp , q ) tninlpq ≥ SU(p, q) for p, q 2. ≥ Triangle groups 1 1 1 Hyperbolic triangle group: (`, m, n) with ` + m + n < 1. Has a subgroup Γ(`, m, n) of index 2 which is a lattice in + 2 PSL2(R) = Isom (H ) . Takeuchi’s Theorem: Γ(`, m, n) is arithmetically defined if and only if all other roots of the minimal polynomial of λ(`, m, n)=4c2 +4c2 +4c2 +8c c c 4 ` m n ` m n − ⇡ are real and negative (where ck = cos( k )). Arithmetic examples: (2, 3, 7), (2, 8, 8), (6, 6, 6), ... only findet manj Non-arithmetic examples: (2, 5, 7), (3, 7, 7), (4, 11, 13), ... Questions? KEY] Go Chip] ) EGCRIXGCGS ) Questions?.
Recommended publications
  • Arxiv:Math/0511624V1
    Automorphism groups of polycyclic-by-finite groups and arithmetic groups Oliver Baues ∗ Fritz Grunewald † Mathematisches Institut II Mathematisches Institut Universit¨at Karlsruhe Heinrich-Heine-Universit¨at D-76128 Karlsruhe D-40225 D¨usseldorf May 18, 2005 Abstract We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the groups of homotopy self-equivalences of K(Γ, 1)-spaces and obtain an extension of arithmeticity results of Sullivan in rational homo- topy theory. 2000 Mathematics Subject Classification: Primary 20F28, 20G30; Secondary 11F06, 14L27, 20F16, 20F34, 22E40, 55P10 arXiv:math/0511624v1 [math.GR] 25 Nov 2005 ∗e-mail: [email protected] †e-mail: [email protected] 1 Contents 1 Introduction 4 1.1 Themainresults ........................... 4 1.2 Outlineoftheproofsandmoreresults . 6 1.3 Cohomologicalrepresentations . 8 1.4 Applications to the groups of homotopy self-equivalences of spaces 9 2 Prerequisites on linear algebraic groups and arithmetic groups 12 2.1 Thegeneraltheory .......................... 12 2.2 Algebraicgroupsofautomorphisms. 15 3 The group of automorphisms of a solvable-by-finite linear algebraic group 17 3.1 The algebraic structure of Auta(H)................
    [Show full text]
  • The Tate–Oort Group Scheme Top
    The Tate{Oort group scheme TOp Miles Reid In memory of Igor Rostislavovich Shafarevich, from whom we have all learned so much Abstract Over an algebraically closed field of characteristic p, there are 3 group schemes of order p, namely the ordinary cyclic group Z=p, the multiplicative group µp ⊂ Gm and the additive group αp ⊂ Ga. The Tate{Oort group scheme TOp of [TO] puts these into one happy fam- ily, together with the cyclic group of order p in characteristic zero. This paper studies a simplified form of TOp, focusing on its repre- sentation theory and basic applications in geometry. A final section describes more substantial applications to varieties having p-torsion in Picτ , notably the 5-torsion Godeaux surfaces and Calabi{Yau 3-folds obtained from TO5-invariant quintics. Contents 1 Introduction 2 1.1 Background . 3 1.2 Philosophical principle . 4 2 Hybrid additive-multiplicative group 5 2.1 The algebraic group G ...................... 5 2.2 The given representation (B⊕2)_ of G .............. 6 d ⊕2 _ 2.3 Symmetric power Ud = Sym ((B ) ).............. 6 1 3 Construction of TOp 9 3.1 Group TOp in characteristic p .................. 9 3.2 Group TOp in mixed characteristic . 10 3.3 Representation theory of TOp . 12 _ 4 The Cartier dual (TOp) 12 4.1 Cartier duality . 12 4.2 Notation . 14 4.3 The algebra structure β : A_ ⊗ A_ ! A_ . 14 4.4 The Hopf algebra structure δ : A_ ! A_ ⊗ A_ . 16 5 Geometric applications 19 5.1 Background . 20 2 5.2 Plane cubics C3 ⊂ P with free TO3 action .
    [Show full text]
  • Introduction to Arithmetic Groups What Is an Arithmetic Group? Geometric
    What is an arithmetic group? Introduction to Arithmetic Groups Every arithmetic group is a group of matrices with integer entries. Dave Witte Morris More precisely, SLΓ(n, Z) G : GZ where " ∩ = University of Lethbridge, Alberta, Canada ai,j Z, http://people.uleth.ca/ dave.morris SL(n, Z) nΓ n mats (aij) ∈ ∼ = " × # det 1 $ [email protected] # = # semisimple G SL(n, R) is connected Lie# group , Abstract. This lecture is intended to introduce ⊆ # def’d over Q non-experts to this beautiful topic. Examples For further reading, see: G SL(n, R) SL(n, Z) = ⇒ = 2 2 2 D. W. Morris, Introduction to Arithmetic Groups. G SO(1, n) Isom(x1 x2 xn 1) = = Γ − − ···− + Deductive Press, 2015. SO(1, n)Z ⇒ = http://arxiv.org/src/math/0106063/anc/ subgroup of that has finite index Γ Dave Witte Morris (U of Lethbridge) Introduction to Arithmetic Groups Auckland, Feb 2020 1 / 12 Dave Witte Morris (U of Lethbridge) Introduction to Arithmetic Groups Auckland, Feb 2020 2 / 12 Γ Geometric motivation Other spaces yield groups that are more interesting. Group theory = the study of symmetry Rn is a symmetric space: y Example homogeneous: x Symmetries of a tessellation (periodic tiling) every pt looks like all other pts. x,y, isometry x ! y. 0 ∀ ∃ x0 reflection through a point y0 (x+ x) is an isometry. = − Assume tiles of tess of X are compact (or finite vol). Then symmetry group is a lattice in Isom(X) G: = symmetry group Z2 Z2 G/ is compact (or has finite volume). = " is cocompact Γis noncocompact Thm (Bieberbach, 1910).
    [Show full text]
  • GROUPOID SCHEMES 022L Contents 1. Introduction 1 2
    GROUPOID SCHEMES 022L Contents 1. Introduction 1 2. Notation 1 3. Equivalence relations 2 4. Group schemes 4 5. Examples of group schemes 5 6. Properties of group schemes 7 7. Properties of group schemes over a field 8 8. Properties of algebraic group schemes 14 9. Abelian varieties 18 10. Actions of group schemes 21 11. Principal homogeneous spaces 22 12. Equivariant quasi-coherent sheaves 23 13. Groupoids 25 14. Quasi-coherent sheaves on groupoids 27 15. Colimits of quasi-coherent modules 29 16. Groupoids and group schemes 34 17. The stabilizer group scheme 34 18. Restricting groupoids 35 19. Invariant subschemes 36 20. Quotient sheaves 38 21. Descent in terms of groupoids 41 22. Separation conditions 42 23. Finite flat groupoids, affine case 43 24. Finite flat groupoids 50 25. Descending quasi-projective schemes 51 26. Other chapters 52 References 54 1. Introduction 022M This chapter is devoted to generalities concerning groupoid schemes. See for exam- ple the beautiful paper [KM97] by Keel and Mori. 2. Notation 022N Let S be a scheme. If U, T are schemes over S we denote U(T ) for the set of T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021. 1 GROUPOID SCHEMES 2 the letter T to denote a “test scheme” over S, as in the discussion that follows. Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y over S.
    [Show full text]
  • COHOMOLOGY of LIE GROUPS MADE DISCRETE Abstract
    Publicacions Matemátiques, Vol 34 (1990), 151-174 . COHOMOLOGY OF LIE GROUPS MADE DISCRETE PERE PASCUAL GAINZA Abstract We give a survey of the work of Milnor, Friedlander, Mislin, Suslin, and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields. Let G be a Lie group and let G6 denote the same group with the discrete topology. The natural homomorphism G6 -+ G induces a continuous map between classifying spaces rt : BG6 -----> BG . E.Friedlander and J. Milnor have conjectured that rl induces isomorphisms of homology and cohomology with finite coefficients. The homology of BG6 is the Eilenberg-McLane homology of the group G6 , hard to compute, and one of the interests of the conjecture is that it permits the computation of these groups with finite coefficients through the computation (much better understood) of the homology and cohomology of BG. The Eilenberg-McLane homology groups of a topological group G are of interest in a variety of contexts such as the theory of foliations [3], [11], the scissors congruence [6] and algebraic K-theory [26] . For example, the Haefliger classifying space of the theory of foliations is closely related to the group of homeomorphisms of a topological manifold, for which one can prove analogous results of the Friedlander-Milnor conjecture with entire coefFicients, cf. [20], [32] . These notes are an exposition of the context of the conjecture, some known results mainly due to Milnor, Friedlander, Mislin and Suslin, and its application to the study of the groups K;(C), i > 0.
    [Show full text]
  • Coalgebras from Formulas
    Coalgebras from Formulas Serban Raianu California State University Dominguez Hills Department of Mathematics 1000 E Victoria St Carson, CA 90747 e-mail:[email protected] Abstract Nichols and Sweedler showed in [5] that generic formulas for sums may be used for producing examples of coalgebras. We adopt a slightly different point of view, and show that the reason why all these constructions work is the presence of certain representative functions on some (semi)group. In particular, the indeterminate in a polynomial ring is a primitive element because the identity function is representative. Introduction The title of this note is borrowed from the title of the second section of [5]. There it is explained how each generic addition formula naturally gives a formula for the action of the comultiplication in a coalgebra. Among the examples chosen in [5], this situation is probably best illus- trated by the following two: Let C be a k-space with basis {s, c}. We define ∆ : C −→ C ⊗ C and ε : C −→ k by ∆(s) = s ⊗ c + c ⊗ s ∆(c) = c ⊗ c − s ⊗ s ε(s) = 0 ε(c) = 1. 1 Then (C, ∆, ε) is a coalgebra called the trigonometric coalgebra. Now let H be a k-vector space with basis {cm | m ∈ N}. Then H is a coalgebra with comultiplication ∆ and counit ε defined by X ∆(cm) = ci ⊗ cm−i, ε(cm) = δ0,m. i=0,m This coalgebra is called the divided power coalgebra. Identifying the “formulas” in the above examples is not hard: the for- mulas for sin and cos applied to a sum in the first example, and the binomial formula in the second one.
    [Show full text]
  • Volumes of Arithmetic Locally Symmetric Spaces and Tamagawa Numbers
    Volumes of arithmetic locally symmetric spaces and Tamagawa numbers Peter Smillie September 10, 2013 Let G be a Lie group and let µG be a left-invariant Haar measure on G. A discrete subgroup Γ ⊂ G is called a lattice if the covolume µG(ΓnG) is finite. Since the left Haar measure on G is determined uniquely up to a constant factor, this definition does not depend on the choice of the measure. If Γ is a lattice in G, we would like to be able to compute its covolume. Of course, this depends on the choice of µG. In many cases there is a canonical choice of µ, or we are interested only in comparing volumes of different lattices in the same group G so that the overall normalization is inconsequential. But if we don't want to specify µG, we can still think of the covolume as a number which depends on µG. That is to say, the covolume of ∗ a particular lattice Γ is R -equivariant function from the space of left Haar measures on G ∗ to the group R ={±1g. Of course, a left Haar measure on a Lie group is the same thing as a left-invariant top form which corresponds to a top form on the Lie algebra of G. This is nice because the space of top forms on Lie(G) is something we can get our hands on. For instance, if we have a rational structure on the Lie algebra of G, then we can specify the covolume of Γ uniquely up to rational multiple.
    [Show full text]
  • Some Structure Theorems for Algebraic Groups
    Proceedings of Symposia in Pure Mathematics Some structure theorems for algebraic groups Michel Brion Abstract. These are extended notes of a course given at Tulane University for the 2015 Clifford Lectures. Their aim is to present structure results for group schemes of finite type over a field, with applications to Picard varieties and automorphism groups. Contents 1. Introduction 2 2. Basic notions and results 4 2.1. Group schemes 4 2.2. Actions of group schemes 7 2.3. Linear representations 10 2.4. The neutral component 13 2.5. Reduced subschemes 15 2.6. Torsors 16 2.7. Homogeneous spaces and quotients 19 2.8. Exact sequences, isomorphism theorems 21 2.9. The relative Frobenius morphism 24 3. Proof of Theorem 1 27 3.1. Affine algebraic groups 27 3.2. The affinization theorem 29 3.3. Anti-affine algebraic groups 31 4. Proof of Theorem 2 33 4.1. The Albanese morphism 33 4.2. Abelian torsors 36 4.3. Completion of the proof of Theorem 2 38 5. Some further developments 41 5.1. The Rosenlicht decomposition 41 5.2. Equivariant compactification of homogeneous spaces 43 5.3. Commutative algebraic groups 45 5.4. Semi-abelian varieties 48 5.5. Structure of anti-affine groups 52 1991 Mathematics Subject Classification. Primary 14L15, 14L30, 14M17; Secondary 14K05, 14K30, 14M27, 20G15. c 0000 (copyright holder) 1 2 MICHEL BRION 5.6. Commutative algebraic groups (continued) 54 6. The Picard scheme 58 6.1. Definitions and basic properties 58 6.2. Structure of Picard varieties 59 7. The automorphism group scheme 62 7.1.
    [Show full text]
  • The Picard Scheme of an Abelian Variety
    Chapter VI. The Picard scheme of an abelian variety. 1. Relative Picard functors. § To place the notion of a dual abelian variety in its context, we start with a short discussion of relative Picard functors. Our goal is to sketch some general facts, without much discussion of proofs. Given a scheme X we write Pic(X)=H1(X, O∗ )= isomorphism classes of line bundles on X , X { } which has a natural group structure. (If τ is either the Zariski, or the ´etale, or the fppf topology 1 on Sch/X then we can also write Pic(X)=Hτ (X, Gm), viewing the group scheme Gm = Gm,X as a τ-sheaf on Sch/X ;seeExercise??.) If C is a complete non-singular curve over an algebraically closed field k then its Jacobian Jac(C) is an abelian variety parametrizing the degree zero divisor classes on C or, what is the same, the degree zero line bundles on C. (We refer to Chapter 14 for further discussion of Jacobians.) Thus, for every k K the degree map gives a homomorphism Pic(C ) Z, and ⊂ K → we have an exact sequence 0 Jac(C)(K) Pic(C ) Z 0 . −→ −→ K −→ −→ In view of the importance of the Jacobian in the theory of curves one may ask if, more generally, the line bundles on a variety X are parametrized by a scheme which is an extension of a discrete part by a connected group variety. If we want to study this in the general setting of a scheme f: X S over some basis S,we → are led to consider the contravariant functor P :(Sch )0 Ab given by X/S /S → P : T Pic(X )=H1(X T,G ) .
    [Show full text]
  • Why Arithmetic Groups Are Lattices a Short Proof for Some Lattices
    Recall is a lattice in G means Why arithmetic groups are lattices is a discrete subgroup of G, and Γ G/ has finite volume (e.g., compact) Dave Witte Morris Γ RemarkΓ University of Lethbridge, Alberta, Canada http://people.uleth.ca/ dave.morris M = hyperbolic 3-manifold of finite volume (e.g., compact) ∼ M h3/ , where = (torsion-free) lattice in SO(1, 3). [email protected] ⇐⇒ = More generally: Γ Γ Abstract. SL(n, Z) is the basic example of a lattice in SL(n, R), and a locally symmetric space of finite volume lattice in any other semisimple Lie group G can be obtained by (torsion-free) lattice in semisimple Lie group G intersecting (a copy of) G with SL(n, Z). We will discuss the main ideas ←→ behind three different approaches to proving the important fact that the integer points do form a lattice in G. So it would be nice to have an easy way to make lattices. Dave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 1 / 19 Dave Witte Morris (Univ. of Lethbridge) Why arithmetic groups are lattices U of Chicago (June 2010) 2 / 19 Example Theorem (Siegel, Borel & Harish-Chandra, 1962) SL(n, Z) is a lattice in SL(n, R) G is a (connected) semisimple Lie group G ! SL(n, R) SL(n, Z) is the basic example of an arithmetic group. G is defined over Q i.e. G is defined by polynomial equations with Q coefficients More generally: i.e. Lie algebra of G is defined by linear eqs with Q coeffs For G SL(n, R) (with some technical conditions): i.e.
    [Show full text]
  • Math.GR] 19 May 2019
    Épijournal de Géométrie Algébrique epiga.episciences.org Volume 3 (2019), Article Nr. 6 p-adic lattices are not Kähler groups Bruno Klingler Abstract. We show that any lattice in a simple p-adic Lie group is not the fundamental group of a compact Kähler manifold, as well as some variants of this result. Keywords. Kähler groups; lattices in Lie groups 2010 Mathematics Subject Classification. 57M05; 32Q55 [Français] Titre. Les réseaux p-adiques ne sont pas des groupes kählériens Résumé. Dans cette note, nous montrons qu’un réseau d’un groupe de Lie p-adique simple n’est pas le groupe fondamental d’une variété kählérienne compacte, ainsi que des variantes de ce résultat. arXiv:1710.07945v3 [math.GR] 19 May 2019 Received by the Editors on September 21, 2018, and in final form on January 22, 2019. Accepted on March 21, 2019. Bruno Klingler Humboldt-Universität zu Berlin, Germany e-mail: [email protected] B.K.’s research is supported by an Einstein Foundation’s professorship © by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/ 2 1. Results Contents 1. Results ................................................... 2 2. Reminder on lattices ........................................... 3 3. Proof of Theorem 1.1 ........................................... 4 1. Results 1.A. A group is said to be a Kähler group if it is isomorphic to the fundamental group of a connected compact Kähler manifold. In particular such a group is finitely presented. As any finite étale cover of a compact Kähler manifold is still a compact Kähler manifold, any finite index subgroup of a Kähler group is a Kähler group.
    [Show full text]
  • Notes on Group Schemes and Cartier Duality
    Notes on group schemes and Cartier duality Spencer Dembner 2 February, 2020 In this note, we record some basic facts about group schemes, and work out some examples. 1 Definition of a group scheme Let Sch=S be the category of schemes over S, where S = Spec(R) is a fixed affine base scheme. Let U : Ab ! Set be the forgetful functor. Definition 1.1. A group scheme is a contravariant functor G: Sch=S ! Ab, such that the composition U ◦ G, a functor from Sch=S to Set, is representable. We will also call the object representing the functor G a group scheme. Let G 2 Sch=S be any object, and by abuse of notation let G denote the representable functor defined by G(X) = HomSch=S(X; G) (we will usually avoid explicit subscripts for the category). Then giving G the structure of a group scheme is the same thing as defining, for each X 2 Sch=S, a group structure on G(X) which is functorial in the obvious ways: a map X ! X0 induces a group homomorphism G(X0) ! G(X), and so on. The functor is contravariant because maps into a group have an obvious group structure, while maps out of a group do not. If G is a group object, then in particular G induces a group structure on the set G(G × G) = Hom(G × G; G). We define m: G × G ! G by m = pr1 pr2, where pri denotes projection onto the i-th factor and the two maps are multiplied according to the group scheme structure; this represents the multiplication.
    [Show full text]