The Hamiltonian Formulation of Geodesics

Total Page:16

File Type:pdf, Size:1020Kb

The Hamiltonian Formulation of Geodesics U.U.D.M. Project Report 2021:36 The Hamiltonian formulation of geodesics Victor Hildebrandsson Examensarbete i matematik, 15 hp Handledare: Georgios Dimitroglou Rizell Examinator: Martin Herschend Juli 2021 Department of Mathematics Uppsala University Abstract We explore the Hamiltonian formulation of the geodesic equation. We start with the definition of a differentiable manifold. Then we continue with studying tensors and differential forms. We define a Riemannian manifold (M; g) and geodesics, the shortest path between two points, on such manifolds. Lastly, we define the symplectic manifold (T ∗M; d(pdq)), and study the connection between geodesics and the flow of Hamilton's equations. 2 Contents 1 Introduction 4 2 Background 5 2.1 Calculus of variations . .5 2.2 Differentiable manifolds . .8 2.3 Tensors and vector bundles . 10 3 Differential forms 13 3.1 Exterior and differential forms . 13 3.2 Integral and exterior derivative of differential forms . 14 4 Riemannian manifolds 17 5 Symplectic manifolds 20 References 25 3 1 Introduction In this thesis, we will study Riemannian manifolds and symplectic manifolds. More specifically, we will study geodesics, and their connection to the Hamilto- nian flow on the symplectic cotangent bundle. A manifold is a topological space which locally looks like Euclidean space. The study of Riemannian manifolds is called Riemannian geometry, the study of symplectic manifolds is called symplectic geometry. Riemannian geometry was first studied by Bernhard Riemann in his habil- itation address "Uber¨ die Hypothesen, welche der Geometrie zugrunde liegen" ("On the Hypotheses on which Geometry is Based"). In particular, it was the first time a mathematician discussed the concept of a differentiable manifold [1]. Symplectic geometry has its roots in Hamiltonian formulation of classical mechanics, where phase spaces take the form of symplectic manifolds. We will begin the thesis with discussing the calculus of variations, where we will get an understanding of concepts used in classical mechanics. Then we continue to define differentiable manifolds. We also define the tangent space and tangent bundle of a differentiable manifold. Moving on, we will discuss tensors, vector bundles, and differential forms. Tensors and differential forms are important tools when studying differential geometry, and the vector bundle can be considered as a family of vector spaces parametrized by a manifold. We then define a Riemannian manifold and derive the geodesic equation on such manifolds. Lastly, we define a symplectic manifold and derive a natural symplectic structure for the cotangent bundle. On the cotangent bundle we can define a vector field, the Hamiltonian vector field, and also define the cogeodesic flow: Theorem. Let (M; g) be a Riemannian manifold. Let (q; p) be local coordi- ∗ 1 ij nates of T M and H(q; p) = 2 g (q)pipj be our Hamiltonian. Then the geodesic equation is equivalent to the cogeodesic flow on T ∗M, given by: i @H ij q_ = = g pj; @pi @H 1 p_ = − = − gjkp p : i @qi 2 ;i j k Example. On the flat torus Tn = (S1)n we have the cotangent bundle ∗ n 1 n n T T = (S ) × R : ∗ n The local coordinates on T T are (θ1; : : : ; θn; p1; : : : ; pn), where (θ1; : : : ; θn) are 1 n standard angular coordinates of (S ) , and (p1; : : : ; pn) the standard coordinates of Rn. The cogeodesic flow is then given by _i θ = pi; p_i = 0: 4 2 Background In this chapter, we will explain some concepts that will be crucial for our un- derstanding of the content in the later chapters. Each concept will have a separate subsection. However, before we can do that, we need to refresh (and in some cases, introduce) definitions, notations, and terminology that will be used throughout this thesis. With h·; ·i we will, if not otherwise stated, mean the Euclidean inner product. If we say that a function f is smooth, we mean that the function is continuous and all its partial derivatives exists and are continuous. Definition 2.1 (Einstein summation convention). If a free index appears twice in a single term, once elevated, and once lowered, we sum over the values of that index. The easiest way to understand Einstein summation is with an example: Example 2.1. Let a = (a1; : : : ; an) and b = (b1; : : : ; bn). Let n X y = aibi: i=1 With Einstein summation, we instead notate the vector b = (b1; : : : ; bn), and then we write i y = aib : Remark. In some instances below, we will use Einstein summation over partial @ derivatives @xi . Then, an elevated index in the "demoninator" is understood as a lowered index. Definition 2.2 (Disjoint union). Let fAi : i 2 Ig be a family of sets indexed by I. The disjoint union of this family is the set G [ Ai = f(i; x): x 2 Aig: i2I i2I F If Ai = A for all i 2 I, then i2I Ai = I × A. 2.1 Calculus of variations In the calculus of variations we consider the extremals of functionals, contin- uous functions from the space C1(U) to the real numbers. Here U ⊂ Rn is compact, and C1 has norm 0 jfjC1 = sup jf(x)j + sup jf (x)j: x2U x2U 2 In euclidean plane R , let γ = f(t; x): x = x(t); t0 ≤ t ≤ t1g be a curve. 1 Consider the approximation γh = f(t; x): x = x(t) + h(t); h 2 C (U)g of γ. Let Φ be a functional, consider the increment Φ(γh) − Φ(γ). 5 Definition 2.3 (Differentiable). A functional Φ is differentiable if Φ(γh) − Φ(γ) = F (h) + R(γ; h); 1 where F : C (U) −! R is linear and continuous, and R(γ; h) = O(jhjC1 ). F (h) is then called the differential. Theorem 2.1. If the function L : R × R × R −! R is differentiable, then the functional Φ(γ) = R t1 L(x(t); x_(t); t)dt is differentiable, with differential t0 Z t1 t1 @L d @L @L F (h) = − hdt + h @x dt @x_ @x_ t0 t0 at any x 2 C2(U) ⊆ C1(U). Proof. See p. 56-57 in [2]. Definition 2.4 (Extremal). An extremal of a differentiable functional Φ(γ) is a curve γ such that F (h) = 0 for all h that vanish along the boundary. Remark. Compare the definition of extremals to the definition of extreme points of a function f(x). 2 Theorem 2.2. The curve γ = f(t; x): x = x(t) 2 C (R); t0 ≤ t ≤ t1g is an extremal of the functional Φ(γ) = R t1 L(x(t); x_(t); t)dt if and only if t0 @L d @L − = 0 (1) @x dt @x_ along the curve x. Proof. See p. 57-58 in [2]. Equation (1) is called the Euler-Lagrange equation, or Lagrange's equa- tion. It can be generalized to higher dimensions. In euclidean space Rn, let @ @ @ x = (x1; : : : ; xn) and = ;:::; . @x @x1 @xn Theorem 2.3. The curve γ = f(t; x): x = x(t); t0 ≤ t ≤ t1g is an extremal of the functional Φ(γ) = R t1 L(x(t); x_(t); t)dt if and only if t0 @L d @L − = 0; i = 1; : : : ; n @xi dt @x_ i along the curve x. The condition of γ being an extremal is independent of coordinate system n on R . Therefore we will use generalized coordinates q = (q1; : : : ; qn). From the Euler-Lagrange equations, we get n second-order differential equa- tions. We would like to reduce them to first-order equations instead. To do this, we first need to define the Legendre transformation. 6 Definition 2.5 (Legendre transformation). Let f : Rn −! R be a convex T function, i.e. x Hf x is positive definite, where Hf is the hessian matrix of f. The Legendre transformation is the function g(p) = hp; x(p)i − f(x(p)) = maxx[hp; xi − f(x)] @f where p = @x . Remark. The Legendre transformation is involutive, i.e. if the Legendre trans- form takes f to g, then the Legendre transform takes g to f. n 2 2 Example 2.2. Let f : R −! R,(x1; : : : ; xn) 7−! x1 + : : : xn be our function. T Then Hf = 2I, so x Hf x is positive definite, and f is convex. Then @f p p p(x) = = (2x ;:::; 2x ) () x(p) = 1 ;:::; n @x 1 n 2 2 and g(p) = hp; x(p)i − f(x(p)) p2 p2 p2 p2 = 1 + ··· + n − 1 + ··· + n 2 2 4 4 p2 p2 = 1 + ··· + n 4 4 is the Legendre transformation of f. Given a Lagrangian L : Rn × Rn × R −! R, assumed to be convex with @L @L respect toq _, consider the equationsp _ = @q , where p = @q_ . Theorem 2.4. The system of n second-order Euler-Lagrange equations is equiv- alent to the system of 2n first-order equations @H p_ = − ; i @q i (2) @H q_i = @pi where H(p; q; t) = hp; q_(p)i − L(q; q_(p); t) is the Legendre transformation of the Lagrangian viewed as a function of q_. Proof. By definition, the Legendre transform of L(q; q;_ t), with respect toq _, is @L the function H(p; q; t) = hp; q_i − L(q; q;_ t), whereq _ =q _(p) and p = @q_ . The total differential of H = H(p; q; t) @H @H @H dH = dp + dq + @p @q @t is equal to the total differential of H = hp; q_i − L(q; q;_ t) @L @L dH =qdp _ − dq − : @q @t 7 The expressions of dH are equal if and only if @H =q; _ @p @H @L = − ; @q @q @H @L = − @t @t @L Plugging inp _ = @q , we get the equations (2).
Recommended publications
  • An Introduction to Differentiable Manifolds
    Mathematics Letters 2016; 2(5): 32-35 http://www.sciencepublishinggroup.com/j/ml doi: 10.11648/j.ml.20160205.11 Conference Paper An Introduction to Differentiable Manifolds Kande Dickson Kinyua Department of Mathematics, Moi University, Eldoret, Kenya Email address: [email protected] To cite this article: Kande Dickson Kinyua. An Introduction to Differentiable Manifolds. Mathematics Letters. Vol. 2, No. 5, 2016, pp. 32-35. doi: 10.11648/j.ml.20160205.11 Received : September 7, 2016; Accepted : November 1, 2016; Published : November 23, 2016 Abstract: A manifold is a Hausdorff topological space with some neighborhood of a point that looks like an open set in a Euclidean space. The concept of Euclidean space to a topological space is extended via suitable choice of coordinates. Manifolds are important objects in mathematics, physics and control theory, because they allow more complicated structures to be expressed and understood in terms of the well–understood properties of simpler Euclidean spaces. A differentiable manifold is defined either as a set of points with neighborhoods homeomorphic with Euclidean space, Rn with coordinates in overlapping neighborhoods being related by a differentiable transformation or as a subset of R, defined near each point by expressing some of the coordinates in terms of the others by differentiable functions. This paper aims at making a step by step introduction to differential manifolds. Keywords: Submanifold, Differentiable Manifold, Morphism, Topological Space manifolds with the additional condition that the transition 1. Introduction maps are analytic. In other words, a differentiable (or, smooth) The concept of manifolds is central to many parts of manifold is a topological manifold with a globally defined geometry and modern mathematical physics because it differentiable (or, smooth) structure, [1], [3], [4].
    [Show full text]
  • Hamiltonian Systems on Symplectic Manifolds
    This is page 147 Printer: Opaque this 5 Hamiltonian Systems on Symplectic Manifolds Now we are ready to geometrize Hamiltonian mechanics to the context of manifolds. First we make phase spaces nonlinear, and then we study Hamiltonian systems in this context. 5.1 Symplectic Manifolds Definition 5.1.1. A symplectic manifold is a pair (P, Ω) where P is a manifold and Ω is a closed (weakly) nondegenerate two-form on P .IfΩ is strongly nondegenerate, we speak of a strong symplectic manifold. As in the linear case, strong nondegeneracy of the two-form Ω means that at each z ∈ P, the bilinear form Ωz : TzP × TzP → R is nondegenerate, that is, Ωz defines an isomorphism → ∗ Ωz : TzP Tz P. Fora(weak) symplectic form, the induced map Ω : X(P ) → X∗(P )be- tween vector fields and one-forms is one-to-one, but in general is not sur- jective. We will see later that Ω is required to be closed, that is, dΩ=0, where d is the exterior derivative, so that the induced Poisson bracket sat- isfies the Jacobi identity and so that the flows of Hamiltonian vector fields will consist of canonical transformations. In coordinates zI on P in the I J finite-dimensional case, if Ω = ΩIJ dz ∧ dz (sum over all I<J), then 148 5. Hamiltonian Systems on Symplectic Manifolds dΩ=0becomes the condition ∂Ω ∂Ω ∂Ω IJ + KI + JK =0. (5.1.1) ∂zK ∂zJ ∂zI Examples (a) Symplectic Vector Spaces. If (Z, Ω) is a symplectic vector space, then it is also a symplectic manifold.
    [Show full text]
  • Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md
    International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 157 ISSN 2229-5518 Riemannian Geometry and Multilinear Tensors with Vector Fields on Manifolds Md. Abdul Halim Sajal Saha Md Shafiqul Islam Abstract-In the paper some aspects of Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields are focused. The purpose of this paper is to develop the theory of manifolds equipped with Riemannian metric. I have developed some theorems on torsion and Riemannian curvature tensors using affine connection. A Theorem 1.20 named “Fundamental Theorem of Pseudo-Riemannian Geometry” has been established on Riemannian geometry using tensors with metric. The main tools used in the theorem of pseudo Riemannian are tensors fields defined on a Riemannian manifold. Keywords: Riemannian manifolds, pseudo-Riemannian manifolds, Lorentz manifolds, Riemannian metrics, affine connections, parallel transport, curvature tensors, torsion tensors, killing vector fields, conformal killing vector fields. —————————— —————————— I. Introduction (c) { } is a family of open sets which covers , that is, 푖 = . Riemannian manifold is a pair ( , g) consisting of smooth 푈 푀 manifold and Riemannian metric g. A manifold may carry a (d) ⋃ is푈 푖푖 a homeomorphism푀 from onto an open subset of 푀 ′ further structure if it is endowed with a metric tensor, which is a 푖 . 푖 푖 휑 푈 푈 natural generation푀 of the inner product between two vectors in 푛 ℝ to an arbitrary manifold. Riemannian metrics, affine (e) Given and such that , the map = connections,푛 parallel transport, curvature tensors, torsion tensors, ( ( ) killingℝ vector fields and conformal killing vector fields play from푖 푗 ) to 푖 푗 is infinitely푖푗 −1 푈 푈 푈 ∩ 푈 ≠ ∅ 휓 important role to develop the theorem of Riemannian manifolds.
    [Show full text]
  • Time-Dependent Hamiltonian Mechanics on a Locally Conformal
    Time-dependent Hamiltonian mechanics on a locally conformal symplectic manifold Orlando Ragnisco†, Cristina Sardón∗, Marcin Zając∗∗ Department of Mathematics and Physics†, Universita degli studi Roma Tre, Largo S. Leonardo Murialdo, 1, 00146 , Rome, Italy. ragnisco@fis.uniroma3.it Department of Applied Mathematics∗, Universidad Polit´ecnica de Madrid. C/ Jos´eGuti´errez Abascal, 2, 28006, Madrid. Spain. [email protected] Department of Mathematical Methods in Physics∗∗, Faculty of Physics. University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. [email protected] Abstract In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t- dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations and formulate a time-dependent geometric Hamilton-Jacobi theory on lcs manifolds. In contrast to previous papers concerning locally conformal symplectic manifolds, here the introduction of the time dependency brings out interesting geometric properties, as it is the introduction of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out. arXiv:2104.02636v1 [math-ph] 6 Apr 2021 Contents 1 Introduction 2 2 Fundamentals on time-dependent Hamiltonian systems 5 2.1 Time-dependentsystems. ....... 5 2.2 Canonicaltransformations . ......... 6 2.3 Generating functions of canonical transformations . ................ 8 1 3 Geometry of locally conformal symplectic manifolds 8 3.1 Basics on locally conformal symplectic manifolds . ............... 8 3.2 Locally conformal symplectic structures on cotangent bundles............
    [Show full text]
  • Tensor Calculus and Differential Geometry
    Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane .
    [Show full text]
  • Lecture 2 Tangent Space, Differential Forms, Riemannian Manifolds
    Lecture 2 tangent space, differential forms, Riemannian manifolds differentiable manifolds A manifold is a set that locally look like Rn. For example, a two-dimensional sphere S2 can be covered by two subspaces, one can be the northen hemisphere extended slightly below the equator and another can be the southern hemisphere extended slightly above the equator. Each patch can be mapped smoothly into an open set of R2. In general, a manifold M consists of a family of open sets Ui which covers M, i.e. iUi = M, n ∪ and, for each Ui, there is a continuous invertible map ϕi : Ui R . To be precise, to define → what we mean by a continuous map, we has to define M as a topological space first. This requires a certain set of properties for open sets of M. We will discuss this in a couple of weeks. For now, we assume we know what continuous maps mean for M. If you need to know now, look at one of the standard textbooks (e.g., Nakahara). Each (Ui, ϕi) is called a coordinate chart. Their collection (Ui, ϕi) is called an atlas. { } The map has to be one-to-one, so that there is an inverse map from the image ϕi(Ui) to −1 Ui. If Ui and Uj intersects, we can define a map ϕi ϕj from ϕj(Ui Uj)) to ϕi(Ui Uj). ◦ n ∩ ∩ Since ϕj(Ui Uj)) to ϕi(Ui Uj) are both subspaces of R , we express the map in terms of n ∩ ∩ functions and ask if they are differentiable.
    [Show full text]
  • Conformal Hamiltonian Systems
    Journal of Geometry and Physics 39 (2001) 276–300 Conformal Hamiltonian systems Robert McLachlan∗, Matthew Perlmutter IFS, Massey University, Palmerston North, New Zealand 5301 Received 4 August 2000; received in revised form 23 January 2001 Abstract Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric con- formal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotan- gent bundles, Lie–Poisson manifolds, and their natural quotients. © 2001 Elsevier Science B.V. All rights reserved. MSC: 53C57; 58705 Sub. Class.: Dynamical systems Keywords: Hamiltonian systems; Conformal Poisson structure 1. Introduction The fields of symplectic geometry and geometric mechanics are closely linked, indeed almost synonymous [10,14]. One of their most important features is that the symplectic diffeomorphisms on a manifold form a group. This property can be taken as the definition of “geometry;” it is natural to try and generalize it. In 1913 Cartan [5,24] found that, subject to certain restrictions, there are just six classes of groups of diffeomorphisms on any manifold, namely (i) Diff itself; (ii) Diffω, the diffeomorphisms preserving a symplectic 2-form ω; (iii) Diffµ, the diffeomorphisms preserving a volume form µ; (iv) Diffα, the diffeomorphisms c preserving a contact form α up to a function; and the conformal groups, (v) Diffω and (vi) c Diffµ, the diffeomorphisms preserving the form ω or µ up to a constant.
    [Show full text]
  • LECTURE 1. Differentiable Manifolds, Differentiable Maps
    LECTURE 1. Differentiable manifolds, differentiable maps Def: topological m-manifold. Locally euclidean, Hausdorff, second-countable space. At each point we have a local chart. (U; h), where h : U ! Rm is a topological embedding (homeomorphism onto its image) and h(U) is open in Rm. Def: differentiable structure. An atlas of class Cr (r ≥ 1 or r = 1 ) for a topological m-manifold M is a collection U of local charts (U; h) satisfying: (i) The domains U of the charts in U define an open cover of M; (ii) If two domains of charts (U; h); (V; k) in U overlap (U \V 6= ;) , then the transition map: k ◦ h−1 : h(U \ V ) ! k(U \ V ) is a Cr diffeomorphism of open sets in Rm. (iii) The atlas U is maximal for property (ii). Def: differentiable map between differentiable manifolds. f : M m ! N n (continuous) is differentiable at p if for any local charts (U; h); (V; k) at p, resp. f(p) with f(U) ⊂ V the map k ◦ f ◦ h−1 = F : h(U) ! k(V ) is m differentiable at x0 = h(p) (as a map from an open subset of R to an open subset of Rn.) f : M ! N (continuous) is of class Cr if for any charts (U; h); (V; k) on M resp. N with f(U) ⊂ V , the composition k ◦ f ◦ h−1 : h(U) ! k(V ) is of class Cr (between open subsets of Rm, resp. Rn.) f : M ! N of class Cr is an immersion if, for any local charts (U; h); (V; k) as above (for M, resp.
    [Show full text]
  • DIFFERENTIABLE MANIFOLDS Course C3.1B 2012 Nigel Hitchin
    DIFFERENTIABLE MANIFOLDS Course C3.1b 2012 Nigel Hitchin [email protected] 1 Contents 1 Introduction 4 2 Manifolds 6 2.1 Coordinate charts . .6 2.2 The definition of a manifold . .9 2.3 Further examples of manifolds . 11 2.4 Maps between manifolds . 13 3 Tangent vectors and cotangent vectors 14 3.1 Existence of smooth functions . 14 3.2 The derivative of a function . 16 3.3 Derivatives of smooth maps . 20 4 Vector fields 22 4.1 The tangent bundle . 22 4.2 Vector fields as derivations . 26 4.3 One-parameter groups of diffeomorphisms . 28 4.4 The Lie bracket revisited . 32 5 Tensor products 33 5.1 The exterior algebra . 34 6 Differential forms 38 6.1 The bundle of p-forms . 38 6.2 Partitions of unity . 39 6.3 Working with differential forms . 41 6.4 The exterior derivative . 43 6.5 The Lie derivative of a differential form . 47 6.6 de Rham cohomology . 50 2 7 Integration of forms 57 7.1 Orientation . 57 7.2 Stokes' theorem . 62 8 The degree of a smooth map 68 8.1 de Rham cohomology in the top dimension . 68 9 Riemannian metrics 76 9.1 The metric tensor . 76 9.2 The geodesic flow . 80 10 APPENDIX: Technical results 87 10.1 The inverse function theorem . 87 10.2 Existence of solutions of ordinary differential equations . 89 10.3 Smooth dependence . 90 10.4 Partitions of unity on general manifolds . 93 10.5 Sard's theorem (special case) . 94 3 1 Introduction This is an introductory course on differentiable manifolds.
    [Show full text]
  • Introduction to Manifolds
    Introduction to manifolds M. L¨ubke April 17, 2018 1 Contents 1 Submanifolds of Euclidean space 4 1.1 Submanifolds of Rn ..................................... 4 1.2 Tangent spaces . 11 2 Differentiable manifolds 14 2.1 Manifolds . 14 2.2 Differentiable maps . 18 2.3 Tangent spaces . 23 2.4 The tangent map . 32 2.5 Submanifolds . 35 3 Differential forms 39 3.1 The exterior algebra of a manifold . 39 3.2 The exterior differential . 44 4 Integration on manifolds 47 4.1 Orientations on a manifold . 47 4.2 The integral . 51 4.3 Subsets with smooth boundary . 56 4.4 The Theorem of Stokes . 58 4.5 The Integral Theorem of Greene . 63 4.6 The Fixed Point Theorem of Brouwer . 64 5 Appendix: (Multi)Linear algebra 67 5.1 Duality . 67 5.2 Exterior powers . 70 5.3 Orientation of vector spaces . 74 5.4 Tensor products . 75 6 Vector bundles and connections 77 6.1 Vector bundles . 77 6.2 Connections in vector bundles . 85 2 In this reader, by differentiable we always mean ∞. C We will use the following notation. n m Let U R be open and f = (f1, . , fm): U R be a differentiable map. Then the Jacobian ∈ −→ (matrix) of f at x U is ∈ ∂f1 (x) ... ∂f1 (x) ∂f ∂x1 ∂xn i . .. Df(x) := (x) = . . ∂xj i=1,...,m j=1,...,n ∂fm (x) ... ∂fm (x) ∂x1 ∂xn We also recall the following results which should be well known from calculus. Theorem 0.0.1 (Implicit Function Theorem) n m n+m Consider R R = R with coordinates (x, y) = (x1, .
    [Show full text]
  • SYMPLECTIC GEOMETRY Lecture Notes, University of Toronto
    SYMPLECTIC GEOMETRY Eckhard Meinrenken Lecture Notes, University of Toronto These are lecture notes for two courses, taught at the University of Toronto in Spring 1998 and in Fall 2000. Our main sources have been the books “Symplectic Techniques” by Guillemin-Sternberg and “Introduction to Symplectic Topology” by McDuff-Salamon, and the paper “Stratified symplectic spaces and reduction”, Ann. of Math. 134 (1991) by Sjamaar-Lerman. Contents Chapter 1. Linear symplectic algebra 5 1. Symplectic vector spaces 5 2. Subspaces of a symplectic vector space 6 3. Symplectic bases 7 4. Compatible complex structures 7 5. The group Sp(E) of linear symplectomorphisms 9 6. Polar decomposition of symplectomorphisms 11 7. Maslov indices and the Lagrangian Grassmannian 12 8. The index of a Lagrangian triple 14 9. Linear Reduction 18 Chapter 2. Review of Differential Geometry 21 1. Vector fields 21 2. Differential forms 23 Chapter 3. Foundations of symplectic geometry 27 1. Definition of symplectic manifolds 27 2. Examples 27 3. Basic properties of symplectic manifolds 34 Chapter 4. Normal Form Theorems 43 1. Moser’s trick 43 2. Homotopy operators 44 3. Darboux-Weinstein theorems 45 Chapter 5. Lagrangian fibrations and action-angle variables 49 1. Lagrangian fibrations 49 2. Action-angle coordinates 53 3. Integrable systems 55 4. The spherical pendulum 56 Chapter 6. Symplectic group actions and moment maps 59 1. Background on Lie groups 59 2. Generating vector fields for group actions 60 3. Hamiltonian group actions 61 4. Examples of Hamiltonian G-spaces 63 3 4 CONTENTS 5. Symplectic Reduction 72 6. Normal forms and the Duistermaat-Heckman theorem 78 7.
    [Show full text]
  • Odd and Even Poisson Brackets 1
    Odd and even Poisson brackets 1 Y. Kosmann-Schwarzbach Centre de Math´ematiques (Unit´eMixte de Recherches du C.N.R.S. 7640) Ecole Polytechnique F-91128 Palaiseau, France Abstract On a Poisson manifold, the divergence of a hamiltonian vector field is a derivation of the algebra of functions, called the modular vector field. In the case of an odd Poisson bracket on a supermanifold, the divergence of a hamilto- nian vector field is a generator of the odd bracket, and it is nontrivial, whether the Poisson structure is symplectic or not. The quantum master equation is a Maurer-Cartan equation written in terms of an odd Poisson bracket (an- tibracket) and of a generator of square 0 of this bracket. The derived bracket of the antibracket with respect to the quantum BRST differential defines the even graded Lie algebra structure of the space of quantum gauge parameters. 1 Introduction In the “geometry of Batalin-Vilkovisky quantization” [13] [14], a supermanifold (M, A) of dimension n|n is equipped with an odd Poisson structure. More precisely, A is a sheaf of Z2-graded Gerstenhaber algebras. A Z2-graded Gerstenhaber algebra A is a Z2-graded commutative, associative algebra, with a bracket, [ , ], satisfying [f,g]= −(−1)(|f|−1)(|g|−1)[g, f] , [f, [g, h]] = [[f,g], h]+(−1)(|f|−1)(|g|−1)[g, [f, h]] , [f,gh] = [f,g]h +(−1)(|f|−1)|g|g[f, h] , 1Quantum Theory and Symmetries, H.-D. Doebner et al.. eds., World Scientific, 2000, 565-571. 1 for all f,g,h ∈ A, where |f| denotes the degree of f.
    [Show full text]