IN PREHISTORY the Lvolution of Archaic and Formative Cultures

Total Page:16

File Type:pdf, Size:1020Kb

IN PREHISTORY the Lvolution of Archaic and Formative Cultures I PACIFIC LATIN AMERICA IN PREHISTORY The Lvolution of Archaic and Formative Cultures Edited by Michael Blake WSU PRESS Washington State University Press Pullman, Washington Washington State University Press PO Box 645910 Pullman, WA 99164-5910 Phone 800-354-7360; FAX 509-335-8568 ©1999 by the Board of Regents of Washington State University All rights reserved First printing 1999 Printed and bound in the United States of America on pH neutral, acid-free paper. Reproduction or transmission of material contained in this publication in excess of that permitted by copyright law is prohibited without permission in writing from the publisher. Libraly ofCongress Cataloging-in-Publication Data Pacific Latin America in prehistory: the evolution of archaic and formative cultures / edited by Michael Blake. p. cm. Includes bibliographical references. ISBN 0-87422-166-8 (pbk. : alk. paper) 1. Paleo-indians-Latin America-Pacific Coast. 2. Pacific Coast (Latin America)-Antiquities. 1. Blake, Michael, 1953­ . E65.P12 1999 911 '.8'091823-dc21 98-43834 ClF 8 Precolumbian Fishing on the Pacific Coast of Panama Richard G. Cooke and Anthony 1. Ranere Introduction: Estuarine skeletons in ontogenetic series (i.e., representing different Fishing in the Eastern Tropical Pacific life stages) in order to identify their ichthyofaunas to the satisfaction of the archaeologists who recover them so It is well known that the productivity, biotic diversity and painstakingly in the field. Objective interpretation of geological heterogeneity of large estuary-lagoon systems human exploitation requires baseline biological data on how along the Pacific coast of tropical America were causally individual species behave and are distributed in the many related to the precocity and intensity of sedentism and different sectors of an estuary. This is a tricky task because civilization in Precolumbian times. Most archaeologists are ETP estuarine fish have been surprisingly poorly studied aware that the abundance, variety and accessibility of (Cooke 1992). Fisheries research has concentrated on estuarine animals offered pre-Spanish hunter-gatherers and commercially important non-estuarine fish, such as tunnies, farmers many alternatives for exploitation. Intrinsic big jack, and groupers. Field biologists have emphasized resource diversity is conducive to intensification from fish that live on reefs or near rocks because they are easier within a biome. Each estuarine system, however, has its to observe than species that swim in turbid waters subjected own biological, physical and historical peculiarities. Many to strong tidal influences. eastern tropical Pacific (henceforth ETP) estuaries are quite extensive. They harbored contemporary human groups with Research Rationale different social and cultural histories. Therefore it is important to inventory resource distribution in space and Our chapter refers to the Santa Marfa estuary on the time within specific estuarine systems in order to determine central Pacific Coast of Panama (Figure 1). This is the their relevance to local, regional and universal correlates of region where the "Code" culture developed, now more economic development. prosaically known as the "Central Region" of Panama In recent years, archaeologists have benefitted from (Cooke and Ranere 1992b; Lothrop 1937, 1942). This improving standards of archaeofaunal and geoarchaeo­ culture is considered to be typical of complex and stratified logical field and laboratory techniques. Nevertheless, chiefdoms in the lowlands of tropical America (Helms reports on animal exploitation in the ETP are still biased 1979; Linares 1977; Willey 1971). The regional chronology towards in vertebrates and large terrestrial vertebrates. has been well-defined. However, Precolumbian settlement Molluscs and mammal and bird bones are easier to see and patterns in the region are imperfectly understood (Cooke collect than tiny fish bones. Furthermore, they generally 1984a; Cooke and Ranere 1992b). represent fewer utilized species, whose skeletons and shells In vestigations into regional subsistence economies are are stored in accessible reference collections. Manyarchae­ still in an interim stage. We cannot collate all the relevant ologists have learnt to handle identifications themselves bodies of data to the satisfaction of a demanding cultural with the help of practical guidebooks. historian. For this reason, we have chosen a topic that the ETP fish faunas are a different matter. Many families existing information can address reasonably objectively, if and genera that live in or enter estuaries are "speciose," i.e., not completely: the degree to which the taxonomic composi­ they contain several species. Although they often resemble tion and proportionality of dietary fish remains from two each other morphologically, these species partition particu­ sites with different 14C ages and topographies within the lar estuarine systems in subtle ways. This diversity means Santa Maria estuary can be used to infer cultural parameters that archaeozoologists must collect large numbers of (i.e., habitat use, capture techniques and foraging ranges) as 103 .... Dry and lJallery B1]farest remnants ~Mangrove ~AIVjnO and sail -- marsh -- 0" .' -- -1: - - :: -:. '. TIDAL A -L VI N A - - '. ------0 FLATS MARIA ~ I Kill <-----J ~N 50km Figure 1. The Middle Estuary of the Santa Maria River in Central Panama, Showing the Locations of Cerro Mangote and Sitio Sierra. well as topographical ones (i.e., site location vis-a-vis the names, we follow their lead. Where we cannot find an evolving coastline). English name, we have invented one (for example, we The two sites are: Cerro Mangote and Sitio Sierra. Cerro translate amblops as "bluntnosed"). Table 1 lists all the fish Mangote was a preceramic camp or hamlet occupied taxa recorded in the archaeological bone samples so that between ca. 5650 and 3600 cal B.c. and, during this period, readers can cross-check popular and biological nomencla­ located about 1.2-5.5 km from the coastline. Sitio Sierra ture. was a nucleated farming village which would have been The Santa Maria River Estuary about 12 km inland between approximately cal A.D. 1 and 400. 1 Our multidisciplinary project in the Santa Marfa basin Summaries of the peculiarities of ETP estuarine fish began in the early 1980s (Cooke and Ranere 1984, 1992a, diversity, ecology and distribution are presented elsewhere 1992b). The eponymous river enters the sea at Parita Bay. (Cooke 1992, 1993a, 1993b; Cooke and Tapia 1994a, Geological sediment cores extracted with a "Vibracore" 1994b). Even so, the following text contains detailed allow us to correlate some aspects of the evolution of its information about fish. In case some readers fmd this delta with sea-level change (Barber 1981; Clary et al. 1984) tedious, we employ the scientific binomial the first time we and, thence, with archaeological sites where fish bones are mention a taxon, and thereafter rely on English common important components of middens (Cooke and Ranere 1984, names. Our marine fish reference is Allen and Robertson's 1989; Cooke 1992, 1993b). Fishes of the Eastern Tropical Pacific (1994). Their To compensate for the scant information about ETP nomenclature differs from that of other monographs (e.g., estuarine fish faunas, we sponsored three parallel investiga­ Bussing and LOpez 1993; FAa 1995; Thomson et al. 1979), tions into modern fish distribution and fishing techniques but since we applaud their attempt to standardize vernacular within this system (localities are identified in Figure 1): (1) 104 the ethnology of fishing at two Parita Bay coastal villages Ta'ble 1. List of Fish Taxa Identified at Cerro Mangote (EI Rompfo, Aguadulce, and Boca de Parita, MonagrilJo) and Sitio Sierra. (directed by John Bort), (2) a taxonomic and quantitative evaluation of the nektonic (i.e., free swimming) fauna Genus and species English Synthesis of captured in an intertidal net-and-pole trap in the Estero Palo name fishing Blanco, Aguadulce, a mangrove-fringed inlet just north of records the Estero Salado channel (Cooke and Tapia 1994b), and (3) a survey of marine fish amphidromy (i.e., periodic Elasmobranchs upward and downward movements) in the middle (mixing) CARCHARHINIDAE: and upper (fluvial) estuary of the Santa Marfa River, based Carcharhinus altimus' bignose shark on bi-monthly captures made with different fishing tech­ C. leucas bull shark niques at four stations located between .8 and 20 km from C. limbatus blacktip shark R the mouth (Table 1; Cooke and Tapia 1994a). Rhizoprionodon longurio Pacific sharpnose Although this research promises to fme-tune our inter­ shark pretations of Precolumbian fishing, there remain several DASYATIDAE: unresolved problems. The first is insoluble: the native Dasyatis longus long-tailed stingray 0 population in this part of Panama was exterminated, MYLIOBATIDAE: hybridized or radically hispanicized soon after initial Aeteobalus narinari spotted eagle ray PRISTIDAE: contact (Romoli 1987). Hence we cannot assume continuity Pristis sawfish 2,4 between pre- and post-contact fishing methods. All that our SPHYRNIDAE: "middle range research" (Trigger 1989:362-7) has achieved Sphyrna lewini scalloped hammer­ so far is to point out which fishing techniques may have head R been used, and in which estuarine habitats the fish taxa Sphyrna tiburo bonnethead identified in the archaeological bone samples may have been UROLOPHIDAE: caught. It is possible that some modern techniques were Urotrygon asterias stingray 0 actually
Recommended publications
  • Copyrighted Material
    Index INDEX Note: page numbers in italics refer to fi gures, those in bold refer to tables and boxes. abducens nerve 55 activity cycles 499–522 inhibition 485 absorption effi ciency 72 annual patterns 515, 516, 517–22 interactions 485–6 abyssal zone 393 circadian rhythms 505 prey 445 Acanthaster planci (Crown-of-Thorns Starfi sh) diel patterns 499, 500, 501–2, 503–4, reduction 484 579 504–7 aggressive mimicry 428, 432–3 Acanthocybium (Wahoo) 15 light-induced 499, 500, 501–2, 503–4, aggressive resemblance 425–6 Acanthodii 178, 179 505 aglomerular 52 Acanthomorpha 284–8, 289 lunar patterns 507–9 agnathans Acanthopterygii 291–325 seasonal 509–15 gills 59, 60 Atherinomorpha 293–6 semilunar patterns 507–9 osmoregulation 101, 102 characteristics 291–2 supra-annual patterns 515, 516, 517–22 phylogeny 202 distribution 349, 350 tidal patterns 506–7 ventilation 59, 60 jaws 291 see also migration see also hagfi shes; lampreys Mugilomorpha 292–3, 294 adaptive response 106 agnathous fi shes see jawless fi shes pelagic 405 adaptive zones 534 agonistic interactions 83–4, 485–8 Percomorpha 296–325 adenohypophysis 91, 92 chemically mediated 484 pharyngeal jaws 291 adenosine triphosphate (ATP) 57 sound production 461–2 phylogeny 292, 293, 294 adipose fi n 35 visual 479 spines 449, 450 adrenocorticotropic hormone (ACTH) 92 agricultural chemicals 605 Acanthothoraciformes 177 adrianichthyids 295 air breathing 60, 61–2, 62–4 acanthurids 318–19 adult fi shes 153, 154, 155–7 ammonia production 64, 100–1 Acanthuroidei 12, 318–19 death 156–7 amphibious 60 Acanthurus bahianus
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Phylogenetic Relationships Within the Speciose Family Characidae
    Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.
    [Show full text]
  • Third International Symposium on Mangroves As Fish Habitat Abstracts*
    Bull Mar Sci. 96(3):539–560. 2020 abstracts https://doi.org/10.5343/bms.2019.0047 Third International Symposium on Mangroves as Fish Habitat Abstracts* COMMUNITY COMPOSITION AND DIVERSITY OF PHYTOPLANKTON IN RELATION TO ENVIRONMENTAL VARIABLES AND SEASONALITY IN A TROPICAL MANGROVE ESTUARY, MALAYSIA by ABU HENA MK, Saifullah ASM, Idris MH, Rajaee AH, Rahman MM.—Phytoplankton are the base of the aquatic food chain from which energy is transferred to higher organisms. The community and abundance of phytoplankton in a tropical mangrove estuary were examined in Sarawak, Malaysia. Monthly-collected data from January 2013 to December 2013 was pooled into seasons to examine the influence of seasonality. The estuary was relatively species-rich and a total of 102 species under 43 genera were recorded, comprising 6 species of Cyanophyceae, 4 species of Chlorophyceae, 63 species of Bacillariophyceae, and 29 species of Dinophyceae. The mean abundance (cells L−1) of phytoplankton was found in the following order: Bacillariophyceae > Dinophyceae > Cyanophyceae > Chlorophyceae. Mean abundance of phytoplankton ranged from 5694 to 88,890 cells L−1 over the study period, with a higher value in the dry season. Species recorded from the estuary were dominated by Pleurosigma normanii, Coscinodiscus sp., Coscinodiscus centralis, Coscinodiscus granii, Dinophysis caudata, Ceratium carriense, Ceratium fusus, and Ceratium lineatum. Abundance of phytoplankton was positively influenced by chlorophyll a (R = 0.69), ammonium (R = 0.64), and silica (R = 0.64). Significant differences (ANOSIM and NMDS) were observed in the species community structure between the intermediate and wet season. The species assemblages were positively correlated with surface water temperature, salinity, pH, ammonium, and nitrate in the intermediate and dry season toward larger species composition in the respective seasons, whereas silica influenced species assemblage in the wet season.
    [Show full text]
  • Review of Analysis of Fish Remains at Chumash Sites
    A Review of the Analysis of Fish Remains in Chumash Sites Noel Van Slyke Abstract The paper begins with a review of techniques that can be used to analyze fish remains in archaeological sites. The remains can be used to identify the fish species and to estimate such details as fish size and weight, minimum number of individuals represented, and season of capture, and to make judgments about fishing techniques and subsistence patterns. The review of analysis techniques is followed by a discussion of the analysis that has been reported for fish remains from Chumash sites. The paper concludes with comments on the analysis of fish remains from Chumash sites. The inspiration of this paper came from a Christmas present. The present was the book Early Hunter-Gatherers of the California Coast, by Jon M. Erlandson (1994). I was impressed by the level of analysis of fish remains and faunal remains in general. I had previously read earlier reports where the level of analysis was more basic. The topic for this paper then evolved as an attempt to review the change in analysis of fish remains over the years and to look at where further analysis of earlier data might be promising. The Analysis of Fish Remains The basis of all analysis of fish remains is species identification. Once the species have been identified other areas of analysis such as quantification, estimates of size, seasonality consid- erations, exploitation, and subsistence evaluation can be investigated. Identification Identification is the primary step in fish remains analysis. Identification of the species allows other analyses to proceed such as quantification, size estimation, seasonality, and exploitation.
    [Show full text]
  • Taverampe2018.Pdf
    Molecular Phylogenetics and Evolution 121 (2018) 212–223 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus phylogeny, divergence times, and a major role for the benthic-to- T pelagic axis in the diversification of grunts (Haemulidae) ⁎ Jose Taveraa,b, , Arturo Acero P.c, Peter C. Wainwrightb a Departamento de Biología, Universidad del Valle, Cali, Colombia b Department of Evolution and Ecology, University of California, Davis, CA 95616, United States c Instituto de Estudios en Ciencias del Mar, CECIMAR, Universidad Nacional de Colombia sede Caribe, El Rodadero, Santa Marta, Colombia ARTICLE INFO ABSTRACT Keywords: We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the Percomorpharia role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were Fish performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation Functional traits indicates that Haemulidae originated during the mid Eocene (54.7–42.3 Ma) but that the major lineages were Morphospace formed during the mid-Oligocene 30–25 Ma. We propose a new classification that reflects the phylogenetic Macroevolution history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be Zooplanktivore strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology.
    [Show full text]
  • Small Pelagics Fishery in Sonora, Gulf of California
    SCS Global Services Report SMALL PELAGICS FISHERY IN SONORA, GULF OF CALIFORNIA MSC Fishery Assessment Report Public Certification Draft Report Prepared by: Dr. Carlos Alvarez (Lead, P1 & P3 Team Member) Ms. Sandra Andraka (P2 Team Member) Ms. Gabriela Anhalzer (Coordination, P2 Support) Dr. Sian Morgan (Quality Review) Natural Resources Division +1.510.452.xxxx [email protected] For Cámara Nacional de la Industria Pesquera (CANAINPES) Sonora, Mexico April 21st, 2017 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA +1.510.452.8000 main | +1.510.452.8001 fax www.SCSglobalServices.com SCS Global Services Report List of Tables .................................................................................................................... 1 List of Figures ................................................................................................................... 3 Glossary ........................................................................................................................... 6 1. Executive Summary ....................................................................................................... 9 Fishery Operations Overview ......................................................................................................................... 9 Assessment Overview .................................................................................................................................. 10 Summary of Findings ..................................................................................................................................
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
    PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales.
    [Show full text]
  • Two Days in Acapulco Ryan Crutchfield
    Two Days in Acapulco Ryan Crutchfield Winter 2018 American Currents 20 TWO DAYS IN ACAPULCO Ryan Crutchfield FishMap.org It was early morning when our plane cleared the haze of store we stopped at had whole squid by the package, so we Mexico City for the short jump to Acapulco where a boat grabbed one and hurried to the boat. I had noticed dur- was waiting for us at the docks. Benjamin (Ben) Cantrell ing our drive groups of soldiers from the army and navy and I had just spent a week with a goodeid study group standing every few hundred feet dressed in full battle gear traveling to obscure locales in Morelos, Michoacán, and with automatic weapons (Figure 1). As we passed an ar- Jalisco. Guided by Dr. John Lyons and Dr. Norman Mer- mored personnel carrier I said, “Hey Roberto, what is up cado, and sponsored by the North American Goodeid with all the soldiers?” Roberto waved his hands towards a Working Group, we had sought out native fish species group of soldiers and said, “It is nothing, my friend, it is from locations including mountain lakes at over 10,000 just for show so that the tourists feel safe.” I nodded, but I feet elevation and the shores of Lake Chapala. While the had my doubts. rest of the group spent time netting and electroshocking, We finally reached the Señora Cotorrona (Figure 2), Ben and I spent our time using tiny hooks to catch tiny where Captain Mike and first mate Miguel were waiting to fish. We had decided earlier on that we would round the cast off.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Peces De La Fauna De Acompañamiento En La Pesca Industrial De Camarón En El Golfo De California, México
    Peces de la fauna de acompañamiento en la pesca industrial de camarón en el Golfo de California, México Juana López-Martínez1, Eloisa Herrera-Valdivia1, Jesús Rodríguez-Romero2 & Sergio Hernández-Vázquez2 1. Centro de Investigaciones Biológicas del Noroeste, S.C. Km 2.35 Carretera a Las Tinajas, S/N Colonia Tinajas, Guaymas, Sonora, México C. P. 85460; [email protected], [email protected] 2. Centro de Investigaciones Biológicas del Noroeste, S.C. Apdo. postal 128 La Paz, B.C.S. C.P. 23000; [email protected], [email protected] Recibido 19-VII-2009. Corregido 15-III-2010. Aceptado 16-IV-2010. Abstract: Bycatch fish species from shrimp industrial fishery in the Gulf of California, Mexico. The shrimp fishery in the Gulf of California is one the most important activities of revenue and employment for communi- ties. Nevertheless, this fishery has also created a large bycatch problem, principally fish. To asses this issue, a group of observers were placed on board the industrial shrimp fleet and evaluated the Eastern side of the Gulf during 2004 and 2005. Studies consisted on 20kg samples of the capture for each trawl, and made possible a sys- tematic list of species for this geographic area. Fish represented 70% of the capture. A total of 51 101 fish were collected, belonging to two classes, 20 orders, 65 families, 127 genera, and 241 species. The order Perciformes was the most diverse with 31 families, 78 genera, and 158 species. The best represented families by number of species were: Sciaenidae (34) and Paralichthyidae (18) and Haemulidae and Carangidae (16 each).
    [Show full text]